学年

教科

質問の種類

物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
数学 高校生

模試です!全て教えて下さると嬉しいです

3 ある旅行会社では,参加者を10名以上50名以下に限定したバスツアーを企画している。 このバスツアーを実施した場合にかかる費用には,「参加者の規模に応じて一律にかかる費 用」(貸し切りバスの費用など)と「参加者1名ごとにかかる費用」(施設への入場料など) がある。 参加者が 26 名以上になると貸し切りバスを2台用意する必要があるため、「参加者の規模 に応じて一律にかかる費用」は次の表のようになる。 参加者の人数 規模に応じてかかる費用 10名以上25名以下 26名以上50名以下 120000 円 210000円 また、参加者が 15名以上の場合, 団体割引が適用される施設があるため、 「参加者1名ご とにかかる費用」は次の表のようになる。 参加者の人数 参加者1名ごとにかかる費用 10名以上14名以下 15名以上50名以下 6000円 5000円 参加者の人数をx名(xは10以上50以下の整数), 1名あたりの参加料をα 円(αは 12000 以上の整数)とし,このバスツアーを実施したときの利益について考える。ただし、 利益とは参加料の合計から「参加者の規模に応じて一律にかかる費用」と「参加者1名ごと にかかる費用」の合計を引いた金額のことであり,キャンセル等による参加者の欠員や消費 税等の税金は考えないものとする。 (1) x=14 とする。 利益が76000円となるような, αの値を求めよ。 (2) x=20 のときの利益を4円,x=30 のときの利益をB円とする。このとき,A,Bを それぞれ」を用いて表せ。 また, |A-BI≦30000 となるようなαの値の範囲を求めよ。 (3)(2)の「A-B≦ 30000 を満たすαの最大値をMとする。 1名あたりの参加料が M円の とき、利益が参加料の合計の30%以上40%以下となるようなxの値の範囲を求めよ。 (配点 25 )

回答募集中 回答数: 0
数学 高校生

階差数列を記述で解くときいつも n-=1のときa1=3・1^2-4・1+3=2より ①はn=1でも成り立つ と書いていたのですが、 とある模試の解説で n-1のとき3・1^2-4・1+3=2=a1 と書いていました。 私の記述方法でも問題ないのでしょうか??

基本例題 105 階差数列 (第1階差) 次の数列{an}の一般項を求めよ。 2,7,18,35,58, 1). (1+ 指針 数列を作る規則が簡単にわからないときは, 階差数列を利用するとよい。 数列{an}の階差数列{bn} とすると bn=an+1-αn () ME {an}: a₁ az a3 a4 {bn}: 616263 n≥20 これは 誤り! ...... n≧2のとき an-1 an CENA n-1 an=a₁+Σbk k=1 -TEX n≧2のときについて, 数列{an}の一般項を求めた後は, それがn=1のときに成り立つか どうかの確認を忘れないように。 THES n-1 =2+6≥k-1 k=1 bn-1 k=1_ n-15I 「n≧2」としないで上の公式αn=a+bk を使用したら, 間違い。 なぜなら, n-1 n=1のときは和②bk が定まらないからである。 k=1 n-1 an= a₁ + Zbr=2+(6k−1) 次の数列の CHART {an}の一般項わからなければ 階差数列{an+1-α,} を調べる =(( [~) • ( [~$ ) + ( [+s}}& 解答 数列{an}の階差数列を {bn} とすると((+1)+2=2 $105 {an}: 2,7,18,35,58, {bn} 5, 11, 17, 23,...... 数列{bn}は,初項 5, 公差 6の等差数列であるから bn=5+(n-1)・6=6n-1 120 =2+6・1/12 (n-1)n-(n-1) =3n²-4n+3 ...... ① 求めよ。 3n²-4n+3=3.12-4・1+3=2 TONOVOLEO p.5383 n=1のとき 初項はα=2であるから, ① はn=1のときも成り立つ。 an=3n²-4n+3 したがって (S+R)+(1+BS) I+ (1+x) 12 7 18 35 58 5 11 17 23 +6 +6 +6 a n≧2に注意。 (2+)2 nではない ことに注意。 (€+S+7)+(S+1)+1= Ekiak= n(n+1) C nの代わりにn-1 とおい たもの。 初項は特別扱い は1で1つの式に変 される (しめくくり)。 + (1+wx + + U ! $$U +(1+ms)}(1+8)

回答募集中 回答数: 0