学年

教科

質問の種類

数学 高校生

イの式のTの2乗の式がわかりません

精講 BU (1)のとき、f(x)=√ 小値を求めよ. 7 π 22 10 (i)は,2sin 12 を計算してもよい。この場合は,加法定理を利用 =√3 cosx+sinx の最大値、 注 最 (- 7 します。 (01/22) 九 π= 3 +など) について, 7 (2)/y=3sin.rcos.resin.z+2cos しょう. 7)t=sinzeos.』 とおくとき, tのとりうる値の範囲を求め よ (イ)yをt の式で表せ. -π (i)は,2sin を計算した方が早いです。 (2) (7) t=sinx-cosx=/2sinx− (ウ)yの最大値、最小値を求めよ、 1 (1) sin.x=t (または, cos.=t) とおいてもtで表すことがで ません。合成して,ェを1か所にまとめましょう。 (2)IAの72 で学びましたが,ここで,もう一度復習しておき/ sing, COSIの和差積は, sin' x+cos2x=1 を用いると、つなぐことができる. π だから、 4 sin(x-4) = 1/2) .. -1≤t≤1 (イ) t2=1-2sinxcosx だから =1/28 (1-12) 3sinxcosx=- v=122 (1-1-2t=120-2t+2/27 y= (ウ) y=- 3 (1 + 2)² + 1/32 (-15151) 2 この程度の合成は, すぐに結果がだせる まで練習すること 41 1. √2 0 √2 y 66 4 4 解答 (1)f(x)=2sin.zcos/+cosr*sin 7 =2sin\r 2sin(x/4-5) 3 setsだから。 (i) 最大値 3 + 1/2 = 1/24 すなわち、x=2のとき (Ⅱ) 最小値 九 x+- 7 3 T. ++ 2 2 3 6 1 右のグラフより 最大値 13 6' 最小値 2 合成する 7 12 10 ポイント 合成によって, 2か所にばらまかれている変数が1か 所に集まる 12 演習問題 60 y=cosx-2sinxcosx+3sinx (0≦x≦)① について, 次の問いに答えよ. (1) ① を sin2x, cos2.x で表せ. の値を求めよ

未解決 回答数: 0
数学 高校生

2番の式が全体的に良くわかんないんですけど教えてくださいませんか?

第4 58 直線の傾きと (1) 軸の正方向と 75° をなす直線の傾きを求めよ. (2) 2直線y=0 (z軸) と y=2.x のなす角を2等分する直線の 精講 うち,第1象限を通るものを求めよ. (1)直線の傾きと,直線がx軸の正方向となす角の間には m=tan0 の関係があります。とても大切な関係式ですが、相 はこれだけでは答えがでてきません. それは tan75° の値を知ら ないからです.しかし, sin 75° や cos 75° ならば, 75° = 45° + 30°と考えれば 54の加法定理が使えます. だから,ここでは tangent の加法定理(ポイント を利用します. (2) 求める直線を y=mx, m=tan とおいて, 図をかくと, tan20=2 をみ たす m(または tanf) を求めればよいことがわかります。このとき、2倍 公式 (ポイント)が必要です. 解答 (1) 求める傾きは tan 75° tan 75°= tan 45° + tan 30° 1-tan 45°tan 30° 1 + tan 30° tan (a+β) tan +tanβ 1-tana tanẞ 1-tan 30° 1-1x59 =45°~B=30 1+ を代入 √3 √3+1 1 -=2+√3 1-- √3-1 √3 注 75°=120°-45°と考えることもできます。 (2)求める直線 y=mx, この直線がx軸の正方 向となす角を0とすると y y=2x =mx ゆえに, m=1-m² ∴.m²+m-1=0 m0 だから =1+√5 m=- 2 √5-1 よって, y= IC 2 (別解) A(1,0),B(1,m), C(1,2) とおくと, y=mxは∠AOCを2等分するので OA: OC=AB BC が成りたつ. .. 1:√5=m:(2-m) よって, m=- ポイント 2 √5-1 2 √5+1 <加法定理> 95 AE 03 第1象限を通るから I A53 (√5+1)=2「角の2等分線の 性質」 tana±tanẞ ・tan (α±β)= < 2倍角の公式> tan 20= 1 + tantan B (複号同順) 2 tan 0 1-tan20 <半角の公式> tan2 1-cos 2 1+cos 0 これらの公式はすべて, tan = Sing の関係と, sin, cos の加法定理、 COS O 2倍角の公式から導かれます. =2 B 演習問題 58 A (0<e<. m>0) tan20=2 2 tan 0 1-tan20 直線 y=x と y=2.x のなす角を2等分する直線y=mz (m> 0) を求めよ.

回答募集中 回答数: 0
数学 高校生

この問題で、2倍角や半角の公式を使うのは分かるんですけど、チャートに書いてある半角の公式が授業でやったものと違うから困惑してます😭 ノートの方の式を両辺2倍しても、チャートのような式にはならなくないですか?分母の2が消されるのかと思うんですけど…😭 教えて下さい🥹お願い... 続きを読む

基本 例題 137 2次同次式の最大・最小を公の色 f(0)=sin'0+sincos0+2cos2 SE CHART & SOLUTION 00 (0sec)の最大値と最小値を求めよ。 sincos の2次式角を20に直して合成 基本135 sin'01-cos20 半角の公式 sin20 sinocoso= L2倍角の公式 cos'=1+cos20 半角の公式 2 これらの公式を用いると, sind, coseの2次の同次式 (どの項も次数が同じである式) は 20 の三角関数で表される。 2 更に、三角関数の合成を使って, y=psin(20+α)+αの形に変形し, sin (20+α) のとり うる値の範囲を求める。 sinaの一般解は Snia 200+0S2000 iz= 4章 0 2000 nia0 200+ (Waia Irie- 17 解答 1)ontes+ nies-Orie= f(0)=sin20+sin Acos0+2cos2日 = 2 + 2n+2 +2・・ 2 すなわち 0=2月 は 3 2 181-083√2 as-081-05-28 onia (= (sin20+cos20)+ =(sin 0022 = sin(20+)+1/ == であるから Sale=e Onie $220066te nie +2 sin30=sin1-cos 20 sin 20 1+cos 20ial-nie & 80lme="asin20, cos 20 で表す。 sin 20 と cos 20 の和 Snie nisine cose の2次の同 次式。 加法定理 y m (1,1) 1 √2 4 0 1 なお、sin30 と π π 5 π 点が6個あるとが よって sin 30 √2 sin (20+)≤1 54 -1 47 π 4 10 1 x 各辺に √√2 を掛けて 2 3+√2 18001 √2 ゆえに 1≤ f(0)≤ 1/2=7sin(20+4 2 √2 したがって,f(0) は πC 20+ すなわち = 7 で最大値 3+√2 2 この各辺に を加える。 4 2 20すなわちで最小値1をとる。 利用

未解決 回答数: 2
数学 高校生

5/54が答えだとダメな理由が分かりません🙇🏻‍♀️

重要 例題 64 ベイズの定理 00000 袋Aには赤球 10個, 白球 5個, 青球3個袋Bには赤球8個, 白球4個, 青球 16個袋Cには赤球4個 白球3個, 青球5個が入っている。 3つの袋から無作為に1つの袋を選び、その袋から球を1個取り出したところ白 球であった。それが袋から取り出された球である確率を求めよ。 基本63 指針 である。 袋Aを選ぶという事象をA, 白球を取り出すという事象をW とすると, 求める確率 P(WA) は条件付き確率 P(A)= P(W) よって,P(W), P(A∩W) がわかればよい。 まず, 事象 Wを次の3つの排反事象 [1] Aから白球を取り出す。 [2] Bから白球を取り出す。 [3] Cから白球を取り出す に分けて、P(W) を計算することから始める。 また P(AW)-P(A)P (W) 袋A, B, C を選ぶという事象をそれぞれA, B, C とし、複雑な事象 解答 白球を取り出すという事象をWとすると P(W)=P(A∩W)+P(B∩W)+P(COW) =P(A)P (W)+P(B)」(W)+P(C)P(W) p=2.5 /1 4 1 3 + + 3 18 3 18 3 12 5 54 排反な事象に分ける <加法定理 <乗法定理 A B C AnW BOW Cow WS 54 27 2 1 = -34+ 12/7+ 1/2-1/101 4 よって、求める確率は Pw(A)= P(A∩W)_P(A)P (W) 5 1 10 = ÷ P(W) P(W) 54 4 27 ( ベイズの定理 検討 上の例題から,Pw(A)= P(A)P (W) P(A)P^(W)+P(B)P₂(W)+P(C)Pc(W) が成り立つ。 一般に、n個の事象 A1, A2,..., A. が互いに排反であり、そのうちの1つが必ず起こる ものとする。 このとき, 任意の事象Bに対して、 次のことが成り立つ。 P(A)P(B) P(A)= P(A1)P, (B)+P(A2)Pi, (B)+....+P(A)P. (B) (k=1, 2,......,n) これをベイズの定理という。このことは、B=(AB)U(A∩B)U...... U (A0B) で、 AB, A2B,...... ABは互いに排反であることから,上の式の右辺の分母がP(B) と一致し、 Pr (A)= P(BA) P(A∩B) P(B) かつ P(A∩B)=P(A) PA, (B) から導か P(B) れる。

回答募集中 回答数: 0
数学 高校生

数A 確率 (ウ)の4C2/9C2のところなのですが、反復試行で計算するときと写真のようにCを使って計算するときの違いを教えていただきたいです🙇🏻

頻出 ★★☆☆ bがこの順に もとに戻さ が変わる (試行が ●くじ 238 乗法定理[2] 頻出 ★★☆☆ 袋には白球5個, 黒球4個, 袋Bには白球5個, 黒球3個が入ってい 個の球を同時に取り出すとき 2個とも白球である確率を求めよ。 る。 袋Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2 場合に分ける 条件より, 袋Aからどの色の球を取り出すかによって,袋Bに 入っている白球の個数が変わる (試行が独立でない)。 [2個取り出し 袋Bに入れる 2個取り出す 5個 黒 4個 袋 A 袋B Action 独立でない試行は,段階に分けて各試行の確率を考えよ 例題 237 袋A 袋B (ア) 白球2個取り出し, 白球2個取り出す ■くじ 袋Bから白球) (イ) 2個取り出す 白球1個) 黒球1個 取り出し, 白球2個取り出す 「いたくじが当たり であるとき, 残るく 本で,その中には くじが2本含まれ から 3-1 10-1 2-9 (ウ)黒球2個取り出し, 白球2個取り出す 袋Aから取り出す 2個の球の色により, 次の場合に分けて 考える。 (ア) 袋Aから白球を2個取り出すとき 6 章 この確率は5CC 9C2 17 袋Bには白球7個と黒球3個が入っているから × 9C2 5C2 7C2 10 C2 7 54 5C1X4C1 (イ)袋Aから白球と黒球を1個ずつ取り出すとき 袋Bには白球6個と黒球4個が入っているから この確率は 9C2 いろいろな確率 10 C2 ■ は, a がはずれく 「いたとき, bが当 じを引く確率 (当 じは3本) である 3 1 10-1 3 ...,n) に りくじを引く 例題 18 参照) がこの順に1本 引いたくじはも 問題237 5C1X4C16C2 5 27 9C2 × (ウ)袋Aから黒球を2個取り出すとき 袋Bには白球5個と黒球5個が入っているから 4C2 5C2 × 9C2 1 10 C2 27 (ア)~(ウ)は互いに排反であるから、求める確率は 7 5 1 19 54 + + 27 27 54 (d) 188 4C2 この確率は 10人のうち 確率の加法定理 238袋 A には白球6個 黒球4個, 袋Bには白球5個, 黒球3個が入っている。 袋 時に取り出して袋Aに入れる。 このとき, 袋Aの中の白球と黒球の個数が最 Aから2個の球を同時に取り出して袋Bに入れた後, 袋Bから2個の球を同 初と変わらない確率を求めよ。 p.447 問題238 431

回答募集中 回答数: 0
数学 高校生

この問題の(2)の解説の下線部がなぜこうなるのか全くわかりません。教えてくださいm(_ _)m

[頻出 ★★☆☆ \3 例題 1164 三角関数の最大・最小 〔4〕・・・ 合成の利用 のときの0の値を求めよ。 D 頻出 (1) 関数 y=sin03 cos) の最大値と最小値, およびそ (2)関数y= 4sin0+3cose (0≧≦T)の最大値と最小値を求めよ。 ESHRON 思考プロセス 加法定理 Sπ ReAction asin0+bcos0 は, rsin (0+α) の形に合成せよ 例題163 サインとコサインを含む式 0≤ 0 B M (1)y=sin0-√3 cost 合成 ↓ y=2sin0- 3 サインのみの式 S π 3 sin (0) 2 sin (0) S 図で考える 0 (2) 合成すると, αを具体的に求められない。 0 B1x →αのままにして, sinα, cosa の値から,αのおよその目安をつけておく。 π (1)ysind-√3 cost=2sin (0- 3 OMO より よって 2 したがって 3 ≤0- π 3 VII √3sin(0)≤1 23 -√3 ≤ 2sin(0-4) ≤ 2 O 3 20 -√3 4 -10 11 x √3 3 π π 0- 3 2 8-4 - 1 すなわち 5 すなわち 0 = _2 6 πのとき最大値2 -1 π π 0- 3 3 すなわち 0 0 のとき 最小値√3 3 2 y = 4sin0+3cos0 = 5sin (0+α) とおく。 5 4 ただし, α は cosa= sina 5 π 0 ≤0≤ より 2 π +α sin(1⁄2 + a) ~ ① より 0<a< であり, sinα <sin a≦ata≦ 10= 35 2 ... ・・① を満たす角。 0 4 y 1 1 <3> ---- π 4 3 から ≦sin (0+α) ≦1 5 最 3≤ 5sin(0+a) ≤ 5 kh, y t 最大値 5, 最小値 3 sina ≦ sin (+α) ≦1 +αである -1 0 mai 41x 5 162 曜 164(1) 関数 y=sin-cos (0≧≦)の最大値と最小値,およびそのときの 9 の値を求めよ。 (2)関数y=5sin0 +12cos (0≧≦)の最大値と最小値を求めよ。 (S) 293 p.311 問題164 π 3 である ARC

回答募集中 回答数: 0
数学 高校生

A外れの場合5/19 Aあたりの場合4/19 よってBの確率は9/19って考えたんですけど、これはどうして違いますか??また、チャートはどのように考えてこの求め方ですか?

320 基本 例題 38 確率の加法定理 ( 順列) 00000 20本のくじの中に当たりくじが5本ある。 このくじをa,b 2人がこの順に、 1本ずつ1回だけ引くとき, a, b それぞれの当たる確率を求めよ。 ただし 引いたくじはもとに戻さないものとする。 p.312 基本事項 CHART & SOLUTION 確率 P(AUB) A,Bが排反ならP(A)+P(B) bが当たる場合は,次の2つの事象に分かれる。 Baがはずれ, bは当たる Aが当たり bも当たる よって, 事象A, B の関係(A∩BØかどうか)に注目する。 解答 P 5 1 aが当たる確率は 20P1 20 4 次に, a, b 2人がこの順にくじを1本ずつ引くとき,起こり うるすべての場合の数は 24P2=380 (通り) 2本のくじを取り出して、 このうち, bが当たる場合の数は Aa が当たり, bも当たる場合 Baがはずれ, b が当たる場合 5P2=20 (通り) a,bの前に並べる場合 の数。 15×5=75 (通り) A. Bは互いに排反であるから, 確率の加法定理により, bが当たる確率は 20 P(AUB) P(A)+P(B)=- 75 95 1 + 380 380 380 4 事象A,Bは同時に起 こらない。 INFORMATION 当たりくじを引く確率は同じ 上の例題において, 1本目が当たる確率と2本目が当たる確率はともに等しい。 一般に,当たりくじを引く確率は,引く順番に関係なく一定である。 また、引いたくじをもとに戻すものとすると, 1本目が当たる確率と2本目が当たる 確率はともに 11 である。したがって 1 当たりくじを引く確率は、引く順、 もとに戻す もとに戻さないに関係なく等しい。 PRACTICE 38° 20本のくじの中に当たりくじが4本ある。 このくじをa, b,c3人がこの順に1本 ずつ1回だけ引くとき、 次の確率を求めよ。 ただし、引いたくじはもとに戻さない のとする。 (1) aが当たり,cも当たる確率 (2) は 確率

未解決 回答数: 2