学年

教科

質問の種類

数学 高校生

(イ)を2枚目のように、「2」を入れ忘れて、3項間漸化式で特性方程式が重解を持つ場合として、等比数列の形にして解きました。 このミスを正そうとして2を加えようと思いましたが、どこに加えればいいか分かりませんでした。そもそもこの考え方が違うのでしょうか。

漸化式典型的なタイプに帰着 -+1によって定義される数列{a} を考える. ここでbn= (ア)条件 α=2, an+1= an-l 3+an とおくとき,bn+1 を by を用いて表せ.また,{a} の一般項を求めよ. an-1 (東京経済大) (イ) 数列{a} を a=1, a2=2, a,+2-24n+1+an=2(n=1,2,3, …)によって定める. bn=an+1-an とおくとき, by をnの式で表せ。 また, annの式で表せ。 (工学院大 ) an+1=pan+α 型 an+1=pan+g(p, q は定数で, 0, 1) ...... ① に対して,a=pa+g...... ② を満たすように定数αを定め、 ①②よりan+1-α=p(an-α) これより{a-α}が公比』の等比数 列であることを用いて解く. n-1 an+1-an=f(n) 型 階差が分かっている数列の一般項は, 階差を足し上げて求める. n≧2のとき an=a1+(az-a)+(as-a2)+..+(an-an-1)=f(1)+(2)+f(n-1)=a+f(k) 上式はn≧2のとき通用する式で, n=1のとき成り立つか否かは確認が必要. 問題によっては, an-an-1=g(n)が分かっている場合もあり、 公式を丸暗記して適用するとミスしやすい. 上式のシグ マ記号の上下の数 (初めと終わり) は, そのつど具体的に確認しよう. 解答 + an-l (ア) an+1= 1 +1 ① 3+an bn= an-1 ( (1日)=1+( 1 bn+1= == an+1-1 1 an-1 3+an (an-1)+4 -=1+ an-1 an-1 4 an-1 =46+1 分数式は分子を低次に. 3+an :.bn+1=46+1 ... ......③ 1 :.bn+1+ =4b₂+ <>a=4a+1 1 ②より, a1=2のとき, b1=1. を満たすαは 3 {{+*} は公比4の等比数列であり,bn+1/2=4"-1 (01+1/2) An ③④より求める. b1+- 3 4"-1 bn= = ②より, an 3 1 bn +1= 3 4"-1 3 4"+2 3 +1= >± 9. an-1=1 4"-1 (イ) an+2-2an+1+an=(an+2-an+1)-(an+1-an)=bn+1-b" が2なので, bnti bn+1-bn=2. また, b1=42-41=1 Pn よって,{bm}は初項 1, 公差2の等差数列で, b=1+2(n-1)=2n-1 2のとき、作品もん an=a1+(az-a)+(a3a2)+…+ ( an-an-1) =a+b1+b2+... +bn-1 =a+ b1+bn-1. 2 1+{2(n-1)-1} (n-1)=1+ 2 よって、求める式は,,=1+(n-1)²=n-2n+2 (n=1,2,3, ...) (n-1) (n=1でもOK) {6} は等差数列. その和は, (項数) (初項) + (末項) 2

解決済み 回答数: 1
数学 高校生

下の方、縦線の右側にk=4+√14のときは第3象限で接する接戦となるとありますがなぜですか??

6:1 x, が2つの不等式x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, 最大値と最小値, およびそのときのx, yの値を求めよ。 の y-2 x+1 基本122 連立不等式の表す領域Aを図示し, y-2 x+1 -=kとおいたグラフが領域Aと共有点をも つようなんの値の範囲を調べる。 この分母を払ったy2=k(x+1)は,点(1,2) を通り, 傾きがんの直線を表すから,傾きんのとりうる値の範囲を考えればよい。 CHART 分数式 y-b y-b 最大 最小 =kとおき, 直線として扱う x-a x-a x-2y+1=0. ①, x2-6x+2y+3= 0 解答とする。連立方程式 ①,②を解くと ② ③ (x, y)=(1, 1), (4, 5) ゆえに、連立不等式 x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域 A は図の斜線部分である。 ただし, 境界線を含む。 y-2 x+1 =kとおくと 10 y-2=k(x+1) 12 2 0 5 2 32 すなわち y=kx+k+2. ...... ③は,点P (-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ②に第1象限で接するとき,k の値は最大となる。 ② ③ からy を消去して整理すると x2+2(k-3)x+2k+7=0 このxの2次方程式の判別式をDとすると k(x+1)-(y-2) = 0 は, x=-1, y=2のとき についての恒等式になる。 →kの値に関わらず定 点 (1,2)を通る。 D =(k-3)²-1-(2k+7)=k²−8k+2 直線 ③ が放物線 ②に接するための条件はD=0であるか k=4±√14 ら, k-8k+2=0 より 第1象限で接するときのんの値は 4/14k=4+√14 のときは, このとき、接点の座標は (√14-1,4√14-12) 第3象限で接する接線と なる。 次に,図から, 直線 ③ が点 (1, 1) を通るとき,kの値は最 小となる。このとき k=1=2=123k=メ 277に代入。 よって 1+1 x=√14-1,y=4√14-12 のとき最大値 4-14; 1 x+1 x=1, y=1のとき最小値 - 2

回答募集中 回答数: 0
数学 高校生

比例式 、サイクリックな式の本質は、 軌跡領域の逆像法でパラメータの存在条件を考える時と同じですか?

11 比例式, サイクリックな式 xy+yz+zx (ア) x+4y y+4z z+8エ 3 をみたす正の実数x, y, z について, 2+12+22 6 4 (椙山女学園大) である. I (イ) y Z y+z 2+1 このとき,この式の値は,x+y+z=0のとき x+y x+y+z=0 の (麻布大獣医) とき である. 比例式はとおく 条件式が ==形(ry:z=a:b:cを意味する比例式)で与えら abc れたときには、この分数式の値をkとおくのが定石で、こうすると計算にのせやすい。 サイクリックな式 (イ)の式の値をとおくと,r=k(y+z) などとなる.ここで, x,y,zをそれぞれy,z, xに入れ替えていくと, x=k(y+z) ⑦ y=k(z+x) ⇒ z=k(rty)..・・・・ウ となり,もう1回やると⑦⑦になる. このように,文字がグルグル回る, ア~⑦を サイクリックな式を言うが、この3式を辺ごとに加えると対称式になり,扱い易くなる. 解答 (ア) x+4y y+4z 2+8x 3 =k (k>0) とおくと, x, y, zが正により, k>0 6 4 x+4y=3k ①y+4z=6k... ②, z+8x=4k...... ③ ①によりェ=3k-4y で, これと③から z = 4k-8=32y-20k これを②に代入して, y+4(32y-20k)=6k 等式の条件は,文字を消去するの が原則 86 2 129 3 y= -k= ==k, I=3k-- 4 -k, z=4k- -k= -k 3 3 E そのままk=31 (1>0) とおいて,r=l, y=21,z=4l 大変 1-21+21-41+41.1 _2+8+4 14 2 よって, 求値式= = 2+(21)+(41) 2 1+4+16 21 23 I (イ) y 2 =k...... ① とおくと, y+z z+x x+y x=k(y+z) +42-6 2+8x-4f 1 k>o ②,y=k (z+x)...... ③, z=k(x+y)......④ ②+③ + ④により,x+y+z=2k(x+y+z) 1°x+y+z≠0のときは, これで割って,k= 1 2 2° x+y+z=0 のとき, y+z=-xとなり,①によりk=-1 注1°のとき,②③によりx-y=1/2 (y-x)となるから,r=y よって①とから,r=y=z となる. ←前文参照. 11 演習題 (解答は p.28) y+4(223-200 36 b+c c+a a+b b+c とする.このとき、 の値は (1) であり,a+b+c=0 a b C a a+b+c+6abc のときの の値を求めると (2) である. (福岡大) (b+c)a 後半は1文字消去すれば 解決する。

回答募集中 回答数: 0