学年

教科

質問の種類

数学 高校生

高校1年生 数Ⅱ 式と証明 2の(4)と5の(3)を計算してみたのですが、答えが合いません。教えていただきたいです🙏

(1) (2a+b)x+(3a-b+5)=0 (2) (a+3)x¹+(3a-b)x+(b+c+2)=0 CF) (1) a=-1.6=2 (2) 2 次の等式がxについての恒等式となるように、 定数a, b, c, d の値を定めよ。 (1) x2+7x+6=(ax+b)(x+1) (2) ax+bx=(x-2)(x+2)+c(x+2)* (3) x²-a(x-2)²+(x-2)+c ( a(x-1)³ + (x-1)²+x-1)+d=x²+x²+*+1 (3) (1) -1,b=6 (2) a=2, b=4,c=1 (3) a=1, 6-4, c=4 (4) a=1,0=4, c=6, d=4 次の等式がxについての恒等式となるように、 定数a,b,cの値を定めよ。 d b 3x+5 (1) ²=1+1 (2)x+1+x+3 (x+1)(x+3) 4 (x+1)(x-1)2 x+1 (2) a=-3, b=-9, c-7 解答 (1) 略 (2) + WE (1) a=1, b = -1 (2) a=1, b=2 (3) a=1, b=-1, c=2 4 次の等式を証明せよ。 (1) (a²+36³)(c²+3d²)=(ac-3bd)² +3(ad+bc)² (2) a²+b²+c²_ab_bc-ca=½{(a−b)²+(b−c)²+(c −e)²} (12) 略 (3) 略 5a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) (a+b)(b+c)(c+α) +abc=0 (2) '+ab+b2=(ab+bc+ca) (3) a²b+c)+ b²c+a)+c²(a+b)+3abc=0 (1) 略 (2) 略 (3) 略 (x-1)2 26 29 ⑥1=1/2のとき、次の等式が成り立つことを証明せよ。 6 (1) (a+b)(c-d)=(a−b)(c+d) (2) 7 a:b:c=2:3:4, abc0 とする。 ab+bc+ca (1) の値を求めよ。 a² +6² +c² (2) 3a+2b+c=32のとき, a,b,cの値を求めよ。 (2) a=4, b=6, c=8 ab+cd ab-cd = = a²+c² a²-c² [8a> b,c>d のとき、次の不等式が成り立つことを証明せよ。 4c+bd>ad+bc 12 次の (1) (2) 13 次 (1) [14 15

回答募集中 回答数: 0
数学 高校生

1枚目のan≠0となる証明は理解できたのですが、 2枚目のa1=1>0、an+1=2√an>0より全ての自然数はnに対してan>0であるのはよくわかりません。また、「ーに対してan>0」ってどう言う意味なのでしょう??

基本例題 119 an+1= ST によって定められる数列{an}の一般項を求めよ。 [類 早稲田大〕 基本116 2 an+1= 指針 漸化式 αn+1= an 4an-1 an のように,右辺の分子が α の項だけの場合の解法の手順は panta ① 漸化式の両辺の逆数をとると 答 CHART 漸化式 an+1= an+1= 1=b, とおくと bn+1=p+qbn an an 型の漸化式 bn+1=b+▲の形に帰着。 p.560 基本例題 116と同様にして一般項 bn が求められる。 また,逆数を考えるために, an=0(n≧1) であることを示しておく。 ところが α= panta したがって an ...... ① とする。 SORTIO 4an-1 ① において, an+1=0 とすると α = 0 であるから, an=0 とな るnがあると仮定すると an-1=an-2==q=0 an= 1 a₁=²/²/² ( (0) であるから,これは矛盾。 よって,すべての自然数nについて αn≠0 である。 ① の両辺の逆数をとると 1 an+1 an 両辺の逆数をとる panto 1 bn 9 -=-= an an+1 =4- bn+1=4-bn an bn+1-2=-(bn-2) 1 = b とおくと an これを変形すると また 1-2=5-2=3 b1-2=- a1 ゆえに,数列{bn-2} は初項 3,公比 -1 の等比数列で bn-2=3.(-1) すなわち bn=3・(-1)"'+2 1 3.(-1)"¹+2 19 00000 Egon an=05 an-1=0 これから an-2=0 以後これを繰り返す。 33d= 逆数をとるための十分条件。 1 an+1 THO Jia Il si ◄bn= 4an-1 an 特性方程式 α =4-α から α=2 an bn=0 という式の形から 565 3章 15 漸化式と数列 で , n). き き q 数 c)dx )に

未解決 回答数: 1