学年

教科

質問の種類

数学 高校生

問題3枚目、図・表1.2枚目です。問題の2.3.4.が分からないです。わかる所だけでも解説よろしくお願いします。

20 TV 34 2019 年度 総合問題 次の文章を読んで、後の問1~問5に答えなさい。 図1は、経済協力開発機構(OECD) 印度でいるのが国の相対的武術の タである。 相対的貧困率とは、各国の所得分布における中央値の50%に満たない 人々の総人口に占める割合である。 20% 18% 16% 14% 12% 10% 8% 6% 4% 2% 0% チェコ フィンランド フランス アイスランド デンマーク 5 オランダ ノルウェー スロバキア オーストリア スウェーデン スイス ベルギー スロベニア アイルランド イギリス ドイツ ハンガリー ルクセンブルク ニュージーランド ポーランド 5-5 OECD平均 福山市立大・柳瀬 韓国 カナダ イタリア ポルトガル オーストラリア ギリシア スペイン 図1 相対的貧困率の国際比較」 スエチ エ 日本 チリ リトアニア 「ラトビア ストニア トルコ イスラエル アメリカ 福山市立大 表 世帯総 平均世帯 相対的 平坦 中 15.7 注1) 各国のデータは,2012年~2016年のデータの中で最新のデータをもとにし ている。 出典:経済協力開発機構 (2018), Income distribution, OECD Social and Welfare Statistics (database), https://doi.org/10.1787/data-00654-en をもとに作成 ETUT ROB09229 表1は,日本における世帯数と世帯人員,各世帯の所得などの年次推移を示してい る。表2は,各国の絶対的な貧困率を示すデータである。絶対的な貧困率とは、経済 的な理由のために,食料が買えない,医療を受けられない、衣服が買えないなどの状 態に,過去1年間に陥ったことがある割合を示している。 torn at T som med sin blunded vonom an

回答募集中 回答数: 0
数学 高校生

2番わかりません

3辺の長さが3, 4, xである三角形について、 次の問いに答えよ。 xのとり得る値の範囲を求めよ. この三角形が鋭角三角形となるようなxの値の範囲を求めよ。 [3+4>x x+3>4 【解答 (1) 3辺の長さが3,4,xの三角形が存在する条件は、 3/ APST yた三角形ができない。 三角形ができるためには, a+b> c が成り立つ必要がある。 考え方 (1) たとえば, 3辺の長さが3, 4,9では、 9 (2) 鋭角三角形となるのは,最大の角が鋭角のときである。 最長となる辺の対角が最大となるので, 4とxを比較する。 辺と角の大小関係は p.425 参照) Focus これより、 x+4>3 (2) (i) 1<x<4のとき,最大の角は長さが4の辺の対 角である.それをaとすると,α<90°となるため には, x2+32-42 2.x.3 cos a=- ->0 1<x< 7 これより これと 1<x<4 より √7<x<4 (ii) 4≦x<7のとき, 最大の角は長さがxの辺の対 角である. それをβとすると, β <90°となるため には, 32+42-x2 2・3・4 √x x2+32-40 の16 cos B=- これより, -5<x<5 これと 4≦x< 7 より , よって, (i), (ii) より, ->0 32 +42-x20 a, b,c を3辺の長さと する三角形が成立する条件 1524 4≦x<5 √7<x<5 HOL BISIDASTANY C 546506 SONG SHOW a+b>c と余弦定理 241 **** a a,b,c を3辺の長 さとするなら a>0. b>0, c>0 *** であるはずだが、こ れらは、三角形の成 立条件の3つの式か ら導かれる。 (次べ ージの Column 参照) 最大角をみるために は、場合分けが必要 一般に Aが鋭角 ⇒b²+c²>a² を用いてもよい。 b+c>ala-bl<c<a+b c+a>b cos A>06²+c²>a²C815 cos A=0b²+c²=a² Aが鋭角 Aが直角 Abcos A <0b²+c²<a²b\ Aが鈍角 <3+0 第4 0% 0<S Let And A すい 次の問いに答えよ.

回答募集中 回答数: 0
数学 高校生

どうやってy=9.3xのグラフを書くのですか? x=−2でy=1となる計算の仕方を教えてください。 (1)

次の関数のグラフをかけ。 また, 関数 y=3のグラフとの位置関係をいえ。 Bay ooooc (2)y=3x+1 (1) y=9.3x (3) y=3-9% 指針y=3* のグラフの平行移動・対称移動を考える。 y=f(x) のグラフに対して 解答 y=f(x-b)+α y = -f(x) (3) 底を3にする。 y=f(-x) y=-f(-x) _1) y=9・3*=32.3x=3x+2 したがって, y=9・3のグラフは, y=3のグラフをx軸方向に2だけ平行移動したもので ある。よって, そのグラフは下図 (1) -)y=3x+1=3(x-1) y=3xのグラフをx軸方向に1だけ平行移動したもの, す したがって, y=3x+1のグラフは2個 なわちy=3* のグラフを軸に関して対称移動し、更に 軸方向に1だけ平行移動したものである。 よって,そのグラフは下図 (2) x y=3-9² = − (3²) ²+3=3*3²8 y=9.3* x軸方向にか、y軸方向にだけ平行移動したもの x軸に関して y=f(x)のグラフと対称 軸に関して y=f(x)のグラフと対称 原点に関して y=f(x)のグラフと対称 したがって, y=3-9 のグラフは 3" のグラフ (*) をy軸方向に3だけ平行移動したもの, YA y=3x 9 -2 -2 234 (*)y=-3* と ラフはx軸に すなわちy=3*のグラフをx軸に関して対称移動し、更にyx軸との交点 - 3*+3=0t 軸方向に3だけ平行移動したものである。 hy よってx= よって, そのグラフは下図 (3) Zkum (2) y=3x+1 +1¹ 22 B + s ( 14 Pl Ay ly=3 13 -y=3x+1 p.260 基本事項 [1 +1 注意 (1) y=3のグ y軸方向に9倍した もある。 (3) y=3xとy=3* はy軸に関して +3 YA +3 17 13 12 0 y=3* y=3-9 +3

回答募集中 回答数: 0
数学 高校生

高一の2020年度の進研模試(3)が分かりません 星のマークがついた写真の部分についてです ①判別式はどれでしょうか ②また24/5<a<8 の24/5はf(0)、8はf(4)のことを指すとすると、4<a<0のようになっているように思えるのですが間違いですか 質問が分... 続きを読む

f(x)のグラフの軸は直線 x = 2/2 a ラフがx軸から切り取る線分の長 次の図のように,x軸との共有 -1 ✓ 10 +1 フが点(+1,0)を通るから, a² 4 = 0 = 0 -a+8=0 -(-36) = -2±2√10 J2 J4 がx軸から切り取る線分の長 なる2つの実数解α , β (a <β) 2 をDとすると (-a+8) 32 -4) 解をもつから, D>0 より > 0 7 このとき, f(x)=0を解くと x=a± √a²+4a-32 2 であるから a-√a²+4a-32 A= 2 よって, β-α=2より α²+4a-32=4 a²+4a-36=0 これを解いて a+√a²+4a-32 a-√a²+4a-32 2 2 √a² +4a-32=2 ここで 3√10より B= = a+√a²+4a-32 2 a=-2±√2°-(-36)=2±√40=-2±2√10 -2-2√10 <8,4<-2+2√10 24 よって / <a<8」1 5 =2 であるから ① に適する。 よって α = -2±2√10」2 (3) y=f(x)のグラフがx軸の 0≦x≦4の部分 と共有点を1つだけもつのは,次の3つの場合が考 えられる。 10 (i) x軸の 「0<x<4」の部分と1点で交わり か つ, 「x<0 または 4 <x」の部分と1点で交わ る。 (ii) x 軸の 「0≦x≦4」の部分と点 (0, 0) または 点 (4, 0) のいずれか1点のみで交わる。 (i) x軸の 「0≦x≦4」 の部分と接する。 ここで f(0)=-a+8, f(4)=-5g+24 (i) のとき D=12-4ac f(0)f(4) < 0 (-a+8)(-5a+24) < 0 J2 (a-8) (5a-24) <0 J4 DC0点くっつく oga = 8 24 40a 2 y=f(x)/ VV 4 y=f(x)| 4

回答募集中 回答数: 0
数学 高校生

確率の問題です! (1)の解説がわからないです! どうして24通りになるのですか?

354 条件付き確率の計算 (2) 基本例題 58 00000 3個のさいころを同時に投げ, 出た目の最大値をX, 最小値をYとし、その差 X-V をZとする。 (1) Z=4 となる確率を求めよ。 〔類 センター試験 (2) Z=4 という条件のもとで, X = 5 となる条件付き確率を求めよ。 1307 指針 (1) 1≦X≦6, 1 ≦ ≧ 6 から, Z=4 となるのは, (X,Y) = 5,1),(6,2)のときである。 この2つの場合に分けて, Z=4 となる目の出方を数え上げる。 (2) Z4となる事象をA, X = 5 となる事象をBとすると, 求める確率は 条件付き P (B) である。 (1) n (A), n (A∩B) を求めているから, PA (B) = して計算するとよい。 3! 2! 解答 (1) Z=4 となるのは, (X,Y) = (5,1), (62) のときである。| Z=X-Y=4から [1] (x,y)=(51) のとき X=Y+4 このような3個のさいころの目の組を目の大きい方から 順にあげると,次のようになる。 X6 であるためには Y = 1 または Y=2 (5,5,1),(5,4,1),(5,3,1),(5,2,1),(5,1,1) + 3×3! + =24 3! 2! この場合の数は [2] (x,y)=(62) のとき [1] と同様にして, 目の組を調べると (6, 6, 2), (6, 5, 2). (6, 4, 2), (6, 3, 2), (6, 2, 2) この場合の数は 3! 2! + 3×3! + p.352 基本事項 3! 2! =24 以上から, Z=4 となる場合の数は 48 2 よって 求める確率は 63 9 (2) Z4となる事象をA, X = 5 となる事象をBとすると, 求める確率は 24+24=48 (通り) PA(B) = n(ANB) 24 1 n(A) 48 2 n(ANB) n(A) 組 (5,5,1)と組 (5.1.1)については じものを含む順列を利 同じものがない1個の飲 入る場所を選ぶと考えて、 3Cとしてもよい。 ◄ P.(B) = P(ACB)= P(A)

回答募集中 回答数: 0