学年

教科

質問の種類

数学 高校生

印つけた部分教えてください

値の 南大] 基本 96 答え 日本 例題 98 2次方程式の解の存在範囲 (3) 161 00000 2次方程式 2(a-1)x+(a-2)2=0 の異なる2つの実数解をα βとす るとき 0 <<1<B<2 を満たすように, 定数αの値の範囲を定めよ。 CHART & SOLUTION 2次方程式の解が2数p, gの間 グラフをイメージ f(p), f(g) の符号に着目 f(x)=x-2(a-1)x+(α-2)2 とすると, y=f(x) のグラフは 下に凸の放物線で、右の図のようになる。 [類 立教大〕 鮮の存在範囲が 0<α <1, 1 <β<2 となるようにするには,f(0), ff (2)の符号に着目する。 右の図から f(0) > 0 かつ f (1) <0 かつ f(2)>0 を満たすようなαの値の範囲を求めればよい。 f(x)=x-2(a-1)x+(a-2)とする。 ..... y=f(x) のグラフは下に凸の放物線であるから, くりとなるための条件は 0f(0)>0 かつ f(1)<0 かつ f(2)>0 る。 ここで f(0)=(a-2)2 f(1)=1-2(a-1)+(a-2)2=α-6a+7 f(2)=4-4(a-1)+(a-2)²=a²-8a+12 =(a-2)(a-6) [(a-2)2>0 Oa 基本 96,97 3章 + 11 0 B2x グラをイメージする。 3つの条件がすべて必要。 例えば, f (0) >0でなく, f(0) <0 とすると, y=f(x) のグラフは, 次の図のようになり, 適さない。 2 x 2次不等式 であるから a²-6a+7<0 ①から (a-2)(a-6)>0 2以外のすべての実数 ②から 3-√2 <a<3+√2 ③から a<2,6<a ④ ⑤ ⑥の共通範囲を求めて 3-√2 <a<2 PRACTICE 98 ① ② α-6a+7=0 の解は a=3±√2 [S] ④20<(0)\ [8] Je1 ⑤ DH 6 80<(E)\ 3-√2 23+√26 18 a

未解決 回答数: 1
数学 高校生

[2]-1<軸<3を軸<0としたのですが、不正解ですか

定数 は以 基本 例題125 2次方程式の解と数の大小 (1) 195 00000 2次方程式 x2-2(a+1)x+3a=0が, -1≦x≦3の範囲に異なる2つの実数解を もつような定数 αの値の範囲を求めよ。 [類 東北大 ] 基本 123 124 重要 127 指針 p.192, 194 で学習した放物線とx軸の共有点の位置の関係は, そのまま 2次方程式の解 と数の大小の問題に適用することができる。 すなわち,f(x)=x2-2(a+1)x+3a として 2次方程式f(x)=0が-1≦x≦3で異なる2つの実数解をもつ 放物線y=f(x) がx軸の1≦x≦3の部分と、異なる2点で交わる したがって D>0, -1<軸<3, f(-10(3)≧0で解決。 解答 3章 CHART 2次方程式の解と数々の大小 グラフ利用 D,軸,f(k) に着目 13 3 2次不等式 この方程式の判別式をDとし,f(x)=x2-2(a+1)x+3a とす る。方程式 f(x)=0が-1≦x≦3の範囲に異なる2つの実数 解をもつための条件は,y=f(x) のグラフがx軸の-1≦x≦3 の部分と、異なる2点で交わることである。 したがって,次の [1]~[4] が同時に成り立つ。 C -1<軸 <3 ya [1] D> 0 [2] -1<軸<3 [3]) f(-1)≥0 D [4] f(3)≥0-( [1] = {-(a+1)-1・3a=a-a+1=(a-2/21)2+2/27 よって, D>0は常に成り立つ。 ...... (*) [2] 軸は直線x=α+1 で, 軸について -1<α+1<3 すなわち -2<a<2: [3] f(-1)≧0から (−1)-2(a+1)・(-1)+3a≧0 ① 3 ゆえに 5a+30 すなわち a≧- [4] f(3) 0 から 32-2 (a+1) ・3+3a≧0 ゆえに -3a+3≧0 すなわち a≦1 33 ①,②③の共通範囲を求めて Oa+1 3 X -3 -2 3 1 2 a 5 - -≤a≤1 注意 [1]の(*)のように,αの値に関係なく、常に成り立つ条件もある。

未解決 回答数: 1
数学 高校生

どうして、方程式が実数解を持つようなkの値を求めるために、複素数の相等という解法を用いるのですか?

68 2 重要 例題 43 虚数を係数とする2次方程式 000 の方程式 (1+i)x2+(k+i)x+3+3ki = 0 が実数解をもつように の値を定めよ。 また、 その実数解を求めよ。 CHART 解答 SOLUTION 2次方程式の解の判別 判別式は係数が実数のときに限る。 MOITULO 実物 D≧0 から求めようとするのは完全な誤り (下の INFORMATION 参照)。 実数解をαとすると (1+i)ω2+(k+i)a+3+3ki = 0 基本 この左辺を a+bi (a, b は実数) の形に変形すれば, 複素数の相等により a=0, 6=0 ←α, kの連立方程式が得られる。 方程式の実数解をα とすると (1+i)a2+(k+i)a+3+3ki=0 整理して (a2+ka+3)+(a2+α+3k)i=0 α,kは実数であるから, a2+ka+3,a2+α+3k も実数。 (k-1)a-3(k-1)=0 (k-1)(a-3)=0 よって a2+ka+3=0 ...... ① α2+α+3k=0 ...... ② ①② から ゆえに よって k=1 または α=3 [1] k=1 のとき ! なぜ (S-)&+n)e=1-e-s x=α EXERCISES A 33 次の2 を代入する。 ◆a+bi = 0 の形に整 (1) 2 (3) 342 次の (1) (3) 35③ (1) ■この断り書きは重B 363 ◆ 複素数の相等。 ◆ α2 を消去。 infk を消去すると α-22-9=0 が得られ 1037 ①,② はともに2+α+3=0 となる。 因数定理 (p.83 基本事項 を利用すれば解くこと きる。 c1 0>(S- これを満たす実数 αは存在しないから,不適。 ◆D=12-4・1・3=-11 03 [2] α=3 のとき ① ② はともに 12+3k=0 となる。 ゆえに k=-4 >0 ①:32+3k+3=0 103 ②:32+3+3k=0 [1], [2] から, 求めるんの値は 実数解は k=-4 0> x=3 INFORMATION 2次方程式 ax2+bx+c=0 の解を判別式 D=62-4ac の符号によって判別できる のはa,b,c が実数のときに限る。 例えば, a=i, b=1,c=0 のとき 62-4ac=1>0 であるが, 方程式 ix²+x=0の解 ■はx=0, iであり,異なる2つの実数解をもたない (p.81 補足参照)。 H

未解決 回答数: 1