学年

教科

質問の種類

数学 高校生

(3)の質問です。 2200=〜(k≧5)までは分かりました。 そこからk=5を試せませんでした。どう試そうと思うのですか? またk^3の位に注目して〜のところでは、例えばk=6のとき、5k^3は2200より小さくなると思うのですが、なぜこの不等式が成り立つのですか? ... 続きを読む

第2問~第4問は,いずれか2問を選択し、 解答しなさい。 第3問 (選択問題(配点20) 自然数Nを7進法で表すと3桁の数 abc (7) となり, 8進法で表すと3桁の数 cba(s) になるとする。 (1) このような自然数Nを求めよう。 a, b, c について が成り立つ。 変形すると アイla-b- アイ b= a= と オ ウエ c=0 ウエ の最大公約数は カキ a- クケ となる。よって, 条件を満たす α, b,c は b= サ である。 したがって,Nを10進法で表すと, N = C= オ スセソ であるから、この等式を である。 (数学Ⅰ・数学A 第3問は次ページに続く。 (2) Nを5進法で表すと, タチツテ である。 (5) (3) 10N を進法で表すと, 4230(k) となった。 このとき, ト k= となる。 (4) 10Nの正の約数は全部でナニ個ある。 これらのうち, 2の倍数はヌネ 個, 4の倍数はノハ 個 8の倍数は ヒ 1個ある。 したがって10N のすべての正の約数の積を2進法で表すと,末尾には 0 が連続 して フへ 個並ぶ。 LE

回答募集中 回答数: 0
数学 高校生

クとケがわかりませんでした。なぜ5/1になるのでしょうか。私は地道にやってあっていたのですが、もう一回解いてみたら答えが合わなくて解答を見ても変わらなかったので解説お願い致します🙇🏻‍♀️🙏🏻

第3問 (選択問題)(配点20) 袋の中に1 2 3 4 5 のカードがそれぞれ1枚ずつ合計5枚の カードが入っている。この袋からカードを1枚取り出し,書かれている数を確認して 袋に戻すことを1回の操作とする。この操作を繰り返すとき, 点Pが次の規則に従っ て数直線 A 上を移動するものとする。ただし, 点 0 をスタート, 点 6 をゴールとし, 点Pは最初スタートにある。 数直線 A 0 第5問は,いずれか2問を選択し、解答しなさい。 3 を取り出す スタート 0 例えば, 操作を繰り返して、 順に3 合, 点Pの座標は 3 1 ・規則 . カードに書かれている数だけ点Pを正の方向に移動させる。 ・カードに書かれている数が, その時点での点Pとゴールの距離より大きいとき は,まず,点Pをゴールまで移動させた後, カードに書かれている数から移動 した数を引いた数の分だけ負の方向に移動させる。 ・点Pが移動後に数直線上の特定の点にちょうど止まることを到達と呼び, 点P がゴールに到達したら操作を終了する。 2 を取り出す 2 3 4 5 2 5 9 5 5 を取り出す ゴール 6 4のカードを取り出した場 2 4 を取り出す となり,この場合は4回目の操作で点Pがゴールに到達して終了となる。 (数学Ⅰ・数学A 第3問は次ページに続く。)

回答募集中 回答数: 0