学年

教科

質問の種類

数学 高校生

下から3行目のn=k+1 はどこから出てきたのかわかりません。教えていただけると助かります!

例例題 274 2つの等差数列の共通の 初項1,公差2の等差数列{an} と初項 1, 公差3の等差数列{bn}がある。 (1) 数列{an}と{bn}の一般項をそれぞれ求めよ。 思考プロセス (2) 数列{an} と {bn}に共通して含まれる項を小さい方から順に並べてで きる数列{cn}の一般項を求めよ。 3176 H (2) 未知のものを文字でおく {an}の第1項と{bn}の第m項が等しいとする。 ⇒21-1=3m-2 (L,mは自然数)す 1 (1) 数列 {an}の一般項は an=1+(n-1) 2=2n-1 >21-3m=-1の自然数解 BAINS 1次不定方程式 Action» 等差数列{an},{bn}の共通項は,a=bm として不定方程式を解け 脂質問を募ることの門商法 数列{bn}の一般項は a S bn=1+(n-1)・3=3n-2 (★★) 309 (2) {an}の第1項と{bn}の第m項が等しいとすると, 21-1=3m-2より 21-3m=-1 l=1,m=1 はこれを満たすから 40 2(1-1)=3(m-1) ・① 2と3は互いに素であるから, 1-1は3の倍数である。 よって, l1 = 3k(kは整数)とおくと l=3k+1 これを①に代入して整理すると m=2k+1 lm は自然数より k = 0, 1, 2, nは自然数より,n=k+1 とおくと k=n-1 ゆえに, l=3n-2 (n=1,2,3, ・・・) であるから Cn = d3n-2= -2=2(3n-2)-1=6n-5 〔別解) A IS 2つの等差数列の項を書き並べると {an}: 1, 3,5,7, 9, 11, 13,15, 17, 19, です SSS - ST {6}: 1,4,7, 10, 13, 16, 19, よって、求める数列{cm} は,初項1の等差数列となる。 公差は2つの数列の公差2,3の最小公倍数6である から Cn=1+(n-1)・6=6n-5 一 a=bm 165303 21-3m=-1 -) 2・1-3・1 = -1 2(1-1)-3(m-1)=0 [*+-+*+/ 3k+1≧1 より ≧0 【2k+1≧1 より ≧0 AREN ■nとんの対応は,不定 方程式 ① を解くときに用 整数1, m の組によっ 変わる。 具体的に考える {an},{bn} を具体的に書 き出して、規則性を見つ ける {cm}:1,7,13, 19, EVAYER 3ªð

回答募集中 回答数: 0
数学 高校生

明日定期テストです😭😭😭😭😭初項なんで10以上なのかだけ分かりません💦それ以外は分かります👌🏻💓

例題 B1.6 2つの等差数列に共通な数列 初項4, 公差3の等差数列{an} と, 初項 200, 公差 -5 の等差数列{6²} がある. 数列{an} と数列{bn}の共通項を, 小さい方から順に並べてでき る数列{C}の一般項と総和を求めよ. 考え方 解答1 |解答 1 数列{an}と数列{bn}の正の項を小さい順に並べた数列{d} を書き出すと,数列 {cm}の初項がみつかり、数列{cm} の規則性もわかる. 解答2 (数列{an}の第l項)=(数列{bn}の第m項)として、自然数 em の関係式を 求め, l, m のいずれかを自然数kで表す. {an}: 4,7, 10 13 16, 19,222528, 数列{bn}の正の項を小さい順に並べた数列{an}は, {d}:5,10,15, 20 25, 30, M よって, 共通項の数列{cm}の初項は10 数列{an}の公差は 3. 数列{dn} の公差は5であるから. 数列{cm}は3と5の最小公倍数 15 を公差とする等差数 列である。 よって、数列{cn}の一般項は, cn=10+(n-1)×15=15n-5 また. 10≦ch 200 より. 10≦15-5≦200 41 したがって、1≦ns 4 より n=1, 2, ...... 13 よって、数列{cm} の総和は, ARRE 1/12 13{2×10+(13-1)×15}=1300 解答2 =4+(n-1)×3−2 an=4+(n-1)-3 =3n+1 bn=200+(n-1)・(-5) =-5n+205 b"> 0 となるnの値は, n≤40 より. 数列 {dm}は. d=b=5 で 公差は5 第8章 { cm} は初項c=10 以上, {6²}の初項 200 以下であ る。 |S₁=n(2a +(n-1)d}

回答募集中 回答数: 0
数学 高校生

どうして下線部で第(k+1)項になるのかが分かりません

40 & マリ共和 京都:パマコ マラウ 首都:リロ 93 コ陰表歴総化基生会 PR 07 312 数学B (2) 数列 (n.) の初項から第n項までの和を S. とする。 (1) より m) から an までは正の数。 gからは負の数となる から, Saは-16 のとき最大となる。 Si-16(2-77+(16-1)-(-5))-632 よって、 初項から第16項までの和が最大で,最大値は632 (8) S-n(2-77+(n-1)-(-5))=5n³+159 --5(n-159)² +5 (159) 10 159_ 10 =15.9 に最も近い自然数16のとき最大 よって, nが となり, 最大値は ・162+ 159. 16=632 2 ゆえに,初項から第16項までの和が最大で、最大値は2 a=bm とすると よって n 51-8m=1...... ① l=-3, m=-2 は ① の整数解の1つである。 よって 5・(-3)-8・(-2)=1 ...... 2 ①-②から 5(1+3)-8(m+2)=0 一般項が5n+4 である等差数列{an}, 一般項が 8n +5 である等差数列を {bn} とする。 ( と (6²) に共通に現れる数を小さい順に並べてできる数列{cn}の一般項を求めよ。 51+4=8m+50 すなわち 5(1+3)=8(m+2) ...... ③ 5と8は互いに素であるから, l+3は8の倍数である。 ゆえに,kを整数として, 1+3=8k と表される。 これを③に 代入すると m+2=5k よってl=8k-3, m=5k-2 l, m は自然数であるから このとき これは,数列{C}の第k項である。 したがって, 数列{cn}の一般項は Cn=40n-11 [inf. ① の整数解の1つを, l=5,m=3 とすると l = 8k+5 が得られる。I≧1 とすると となるので、 k≧1 a=5l+4=5(8k-3)+4=40k-11 とみて -160 16(77+2) としてもよい。 S. 頂点最大 であり, ・・であるからC1=29 項を表す。 よって, 求める一般項は Cn=40(n-1)+29=40n-11 として求めなければならない。 40 別解 5と8の最小公倍数は {an}:9, 14, 19, 24,29, ****** 100の間にあ めよ。 (2) 110 の間にあ 1と100の間にあ 3'3' 3, これは初頭が から、 ①の和は ①のうち 整数 2+3+ したがって, 求 p+1 (2) 1と10の間 Þ これは初項か 10p-1-(p lmk は自然数。 11, m≧1 とすると k≧1 になる。 よって, a=40k~11は 数列{C}の第k項。 { cm} のnは自然数である a=51+4=5(8k+5)+4=40k +29 は, 数列{cn}の第(k+1) k≧0となるが、数 から、0以上の整数と 自然数nを対応させる必 要がある。 ①の? したがっ 11 (9p- 2 よって {bn}:13,21,29,37,45, よって,数列{cm} は 初項 29, 公差 40 の等差数列であるから, (公差)=(2つの数列 その一般項は Cn=29+(n-1)・40=40n-11 の公差の最小公倍数) 1 2 PR 29 xx=8utsm② xすると 初工 (1) h

回答募集中 回答数: 0