学年

教科

質問の種類

数学 高校生

数Ⅰ関数です。(2)の解説お願いします

重重要 例題 71 定義域によって式が異なる関数 関数f(x) (0≦x≦4) を右のように定義すると き、次の関数のグラフをかけ。 (1) y=f(x) 指針 ((2) y=f(f(x)) 20 (0≦x<2) f(x)=1 8-2 (2≤x≤4) 定義域によって式が変わる関数では,変わる 境目のx,yの値に着目。 (2)f(f(x))はf( f(x)<2のとき f(x)を代入した式で, 2f(x) f(x)のとき 8-2f(x) (1)のグラフにおいて,f(x)<2となるxの範囲と, 2≦f(x)≦4 となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 解答 (2)f(f(x))={2 [2f(x) (0≤f(x)<2) 8-2f(x) (2≤f(x)≤4) よって, (1) のグラフから 0≦x<1のとき 1≦x<2のとき 25 f(f(x))=2f(x)=2・2x=4x f(f(x))=8-2f(x)=8-2・2x =8-4x (p+d 2≦x≦3のときf(f(x))=8-2f(x)=8-2(8-2x)/ =4x-8 3<x≦4のとき f(f(x)) =2f(x)=2 (8-2x) Pry) 220=16-4x4 よって,グラフは図(2) のようになる。 (1) YA 4 すわ(2) YA 変域ごとにグラフをかく。 (1)のグラフから,f(x) の変域は 0≦x<1のとき 0≤f(x)<2 1≦x≦3のとき ① 2≤f(x)≤4 3<x≦4のとき 0f(x)<2 また、 1≦x≦のとき, f(x) の式は 1≦x<2なら f(x)=2x 2≦x≦3なら f(x)=8-2x のように2を境にして 式が異なるため、 (2) は左 の解答のような合計4通 りの場合分けが必要に なってくる。 2 0 1 20 I 3 4 でおし X 0 1 2 3 4 X 移動の くこともできる。 8から2倍を 引く 123

回答募集中 回答数: 0
生物 高校生

問題文から何を言っているのか全くわからないです。問題を解く時の考え方など教えて欲しいです🙇‍♀️🙇‍♀️

30 30 発展 25 次の文章を読み、 以下の問いに答えよ。 細胞分画法は,細胞小器官の大きさや重さ の違いを利用し、細胞小器官やそれ以外の成 分を分離する方法である。 ある動物細胞から, 次のような細胞分画法(図1)で, 細胞小器官 を分離した。 細胞破砕液 遠心分離 1000g 上澄みal 遠心分離 20000g 上澄み可 沈殿A 遠心分離 150000g 上澄みc 沈殿B まず 4℃の環境のもと, 適切な濃度の スクロース溶液中で細胞をすりつぶし, 細胞 破砕液をつくった。 次に,細胞破砕液を試験 管に入れて, 1000g(gは重力を基準とした遠 心力の大きさを表す) で10分間遠心分離し、 沈殿 A と上澄みa を得た。 これらを光学顕 微鏡で観察したところ, 沈殿Aには核と未 破砕の細胞が含まれていたが,上澄みa 表1 各沈殿・上澄み中の酵素Eの活性(U) 沈殿C 図1 細胞分画法 沈殿 A 134 U 上澄み a XU 沈殿 B 沈殿 C 463 U 6U 上澄み b 上澄み YU 25 U には,これらは含まれていなかった。 上 澄みをすべて新しい試験管に移し、 20000g 20分間遠心分離し, 沈殿B と上澄み bに分けた。 さらに, 上澄み b をすべて新しい試験管に移し, 150000g で180分間遠心分離し、 沈殿Cと上澄み に分けた。次に,各沈殿と各上澄みについて 呼吸に関する細胞小器官に存在する 酵素の活性を測定し,表1に示す結果を得た。 なお表中のU(ユニット)は酵素 E

回答募集中 回答数: 0