学年

教科

質問の種類

数学 高校生

写真の中にある紫ペンで囲った式の変形の覚え方を教えて欲しいです。語呂合わせでもダジャレでもなんでも結構です。全く覚えられなくて…。誰かお願いします!単元は数学的帰納法です。

考え方 自然数nに関する証明については, 考えてみよう. (証明)(1) n=1のとき,P,=t+1=xより成り立つ。 ーソドッ =kのとき、P=+1/2=xのを次の多項式)と仮定すると th +1 のとき, Ph+1=tk+1+ th+- th =xP-P- tk+1 Phだけではなく,P-1 の次数についても仮定が必要になる.また,(II) m ・・であるから, k-1≧1 より k≧2 でなければならない + ここで, Pa= (xk次の多項式) と仮定しているから,xPkはxの(k+1) 次 ある.しかし,P-1 については,何次式なのか、xの多項式なのかもわからない とすると, n=1, 2, 解答 (I) n=1のとき,Pi=t+==xより成り立つ. 1 t \2 1 n=2のとき,P2=tt1/12=t+ t (II)n=k-1,k(k≧2) について、題意が成り立つと仮定する. 2=x-2より題意は成り立 JPk-1 は xの (k-1) 次の多項式 すなわち, [Phはxの次の多項式 k tk+ Pk+1=t+1+ +1 1+1 = (1 + 1/1) (0 + 1 ) = ( 1^-1 + tk+1 =xP-P-1 で表されると仮定す tk th tk- 1 ここで,xPk は x(xのk次の多項式)より, 数列 + (I) (II)より すべての自然数nについて題意は成り 立つ. *)は成り立 よって、n=k+1のときも題意は成り立つ 次の多項式であるから, Pk+1 は xの (k+1) 次の 多項式となる. xの (k+1) 次の多項式となり、Pはxの(k-1) Pa (k- はxの 式より, Pk1 =(x (k+1) -xの(k- 注》 (I)でPがxの1次の多項式であることだけを示し, (II)の一般的な方法 2次の多項式であることを示そうとすると, Po, P, が必要となり困る。 れていない) よって,(I)でP2 も調べておく必要がある. なお,下の練習 B1.63は, フィボナッチ 千

解決済み 回答数: 1
数学 高校生

この問題の(2 でなぜ選択肢2が成り立つのか分かりません。照明があるのですがらあまりによって何がわかり、どうして矛盾するのでしょうか、、?、 解説お願いします🙏

例題太郎さんと花子さんは次の証明問題について話している。 二人の会話を読んで下の 問いに答えよ。 問題 直角三角形の斜辺の長さが自然数c, その他の2辺の長さが自然数 a, b であるとき, a, b, c のうち少なくとも1つは5の倍数であることを証明せよ。 花子:直角三角形の3辺の長さといえば,三平方の定理だね。 斜辺の長さが c, そ A の他の2辺の長さがそれぞれα, bだから問題は「自然数 α,b,c が a2+b2=c2 を満たすとき, a, b, c のうち少なくとも1つは5の倍数である」 という性質を証明することだね。 C b B a 太郎:こんな性質があったなんて知らなかったよ。本当に成り立つのかな。 花子: 例えば, a=3, b=4,c=5のときは,cが5の倍数になっているね。 太郎: 他にアのときもこの性質が成り立つよ! どうやらこの性質は成り立つようだね。 じゃ あ、どうやって証明すればいいだろう。 5の倍数であることを証明するから, mを自然数と してα=5mとおいて考えればいいかな。 花子: それだと,その後どうすればいいかわからないよ。こういうときは,授業で習った 「背理法」 を使えばいいんじゃない? 太郎 : 「命題が成り立たないと仮定して, 矛盾を導く」という証明方法だったから,「 A a,b, chi B を満たし,C」と仮定すればいいね。 (1) アに当てはまる最も適当なものを,次の①~③のうちから一つ選べ。 ⑩a=1,6=2,c=√5 ① a=1,6=2,c=3 ② a=8,615,c=17 ③ a=13,6=12,c=5 (2) A B C に当てはまる組み合わせとして最も適当なものを、次の①~③のうちか ら一つ選べ。 イ A B 2+b2=c ⑩ 自然数 ① 自然数 2 ② 自然数 C 自然数 ' +62≠c2 ③無理数 a² +b² c² ²+62=c a2+b2=c a, b, c のうち少なくとも1つは5の倍数でない a, b, c のうち少なくとも1つは5の倍数である a, b, c のいずれも5の倍数でない a, b, c のうち少なくとも1つは5の倍数である 数学- 10

回答募集中 回答数: 0