学年

教科

質問の種類

数学 高校生

この注意のところの解説がよくわからないので説明お願いしたいです

□ 多項式の 計算法則 交換法則 結合法則 分配法則 指数法則 2 (a™) 3 (ab) 展開の公 1 (a+ 2 (a+ 3 (x+ (ax b a= C=1 5. a K S 64 基本例題32 3<x<5, -1<y<4 であるとき, 次の式 (11) x-i (2) -3y (3) x+y 指針 (1)3<x 解答 から 3-1<x-1 x<5からx-1<5-1 (2) -3 <0であるから, -3を掛けると 不等号の向きが変わる。 (1) 3<x<5の各辺から1を引いて 3-1<x-1<5-1 すなわち 2<x-1<4 (2) −1 <y<4の各辺に-3を掛けて (3) A<x<B, C <y<Dのとき, A+C<x+y <B+D (4) x+(-y) として考える。下の検討も参照。 (5) 2x+(-3y) として考える。 値の範囲を求めまし -1 (-3)>-3y>4.(-3) (4)) x-y }よって よって3-1<x-1<5」になるという。 -1(-1)>-y>4・(-1) すなわち -4<-y<1 これと3<x<5の各辺を加えて すなわち -12<-3y<3 2<x+y<9 (3)3<x<5, -1<y<4の各辺を加えて 注意 解答では性質 (*) を用いたが, 丁寧に示すと、次のよう になる。 3<x<5の各辺にy を加えて 3+y<x+y<5+y -1 <y から 3-1 <3+y, y<4から5+y<5+4 >よって (4) -1<y<4の各辺に-1を掛けて ****** 2<xfy, x+y<9 すなわち 2<x+y<9 XOX 本 例 33 不等式の性質と式の個 を正の数とする。 x 3x+2y を小 <r-v<6 a-c xの値の範囲を求めよ。 (2) まずは、問題文で与えられた条件を、 yの 例えば、小数第1位を四捨五入して の値の範囲は3.5sa < 4.5である。 (2) 3x+2y の値の範囲を不等式で表し とで2yの値の範囲を求めることが? を求める。 (1) xは小数第1位を四捨五入すると ら 5.5x6.5 Cecccc <a<b,2) 3x+2y は小数第1位を四捨五入 a> あるから 負の値を 号の①の各辺に-3を掛けて 20.53x+2y<21. ah したがって -16.5W-3x>-1 -19.5 <-3x- すなわち ② ③ の各辺を加えて 20.5-19.5 <3x+2 1<2y<5 各辺を2で割って1/12 <x<12/20 等号にを含む含まないに注意

回答募集中 回答数: 0
数学 高校生

この問題の合同式を使った解法について質問なんですが、最初のNはなぜこのように置けるのでしょうか?

S 整数の性員 例題262 考え方 3で割ると2余り, 5で割ると3余り, 7で割ると4余る3桁の正の整数 のうち、最大のものを求めよ. 不定方程式の応用 (1) (その1) Nは整数x, y, z を用いて, N = 3x+2=5y+3=7z+4 と表せるの 3で割ると余り, 5で割ると3余り, 7で割ると4余る整数をNとする。 y, zについての不定方程式ができる. 3で割ると2余る← 5 で割ると3余る 7で割ると4余る⇔ これらからNの規則性を見つける. 問題文の「3で割る,5で割る, 7で割る」から, N=15α+35万+ b,cは整数)という数を考え, 合同式 (p.440) を利用する。 (その2) (その3) N+1は3の倍数 N+2は5の倍数 N+3は7の倍数 答1 3で割ると2余り, 5で割ると3余り 7で割ると4余る 整数をNとおくと, N=3x+2=5y+3=7z +4 (x,y,zは整数) とおける. 3x+2=5y+3 より, 3x-5y=1 .....① .....1 ①の解の1つは、x=2, y=1 であるから 3×2-5×1=1 ...... ② 0304 3(x-2)-5(y-1)=0 ①-②より, したがって, 3(x-2)=5(y-1) り,x-2は5の倍数であり, kを整数とすると, x-2=5k, すなわち, x=5k+2 ...... ③ 3x+2=7z+4 3と5は互いに素よ また, ③より, 3(5k+2)+2=7z+4, すなわち, 24 15k-7z=-4 ...... ・④ ④の解の1つは,k=3, z=7 であるから, 15×3-7×7=-4 ...... ⑤ 5 ④ - ⑤ より, 15(k-3)-7(z-7)=0 ミ まず不定 3x+2= を考え 次に |3x+ を考

回答募集中 回答数: 0
数学 高校生

ベクトルに関する問題です。線が引いてあるところがなぜそうなるのかわからないです。

152 2つのベクトルに垂直な単位ベクトル 2つのベクトルa=(2,1,3)と=(1, -1, 0) の両方に垂直な単位ベクトルを 00000 求めよ。 基本例題 y, z) とすると ・求める単位ベクトルを= (x, [1] lel=1*5 let=1 [2] 前方から ae=0, be=0 これらから、x,y, 2の連立方程式が得られ,それを解く。 なお、この問題はp.404 基本例題13 を空間の場合に拡張したものである。 CHART なす角 垂直 内積を利用 求める単位ベクトルをe= (x, de le であるから よって 2x+y+3z=0 1, x-y=0 また、el=1であるから?x+y+z=1 ②から y=x 更に①から これらを③に代入して ゆえに 3x2=1 y, z) とする。 a⋅e=0, b·e=0 e=+ よって u |u| x=-x x2+x2+(-x)=1 1 x=± √√3 【検討 2つのベクトルに垂直なベクトル a=(a₁, az, az), b=(b₁,b₂, b3) KXFL u=azbs-asbz, asbi-abs, arbz-a2bi) はとの両方に垂直なベクトルになる。 各自, qu=0,u=0 となることを確かめてみよう。 また、こ p.489 参照。 このとき 1/11/1/13号同順) 2=F₁ √3 したがって, 求める単位ベクトルは =(//////)(/1/11/11/1) 上の例題では,u=(3,3,-3), lul=3√3から Laに垂直なベクトルの1つ 土 =(1,1,-1) (信州大) 詳しくは の外積という。 「は」として扱う 1.460 基本事項 基本 a₁ b₁ ◄el²=x² + y² +2² b 1 < = + ( + 7/3 + + 3 (3-7) でもよい。 の計算法 X> 463 /3 a3 XXX. ab2a2b1abs-asbababy (2成分) (成分) (y成分) 各成分は の横) (の横) ar 2章 8 空間ベクトルの内積 練習 4点A(4, 1,3), B(3, 0, 2), (-3, 0, 14), D (7, -5, 6) について, AB, 52 CD のいずれにも垂直な大きさのベクトルを求めよ。 [ 名古屋市大〕

回答募集中 回答数: 0