学年

教科

質問の種類

数学 高校生

下線部のところなんでですか?🙇‍♂️

370 基本 例題 13 複利計算と等比数列 毎年度初めにα円ずつ積み立てると, n 年度末には元利合計はいくらになる か。 年利率を、1年ごとの複利で計算せよ。 CHART & THINKING nの問題 n=1,2,3, ・・・で調べてn化 (一般化) 中央大 p.365 基本事項3基本11 「1年ごとの複利で計算」とは、1年ごとに利息を元金に繰り入れて利息を計算することを いいこの計算方法を複利計算という。 なお,1年度末の元利合計は、次のように計算される。 (元利合計)=(元金)+(元金)×(年利率)=(元金)×(1+年利率) この例題をn=3として考えてみると,各年度初めに積み立てるα円について,それぞれ 別々に元利合計を計算し、 最後に総計を求めることになる。 a 積み立て ← 1年度末 a(1+r) a 積み立て ← 2年度末 3年度末 a(1+r)² a(1+r)³ a(1+r) a(1+r)² a 積み立て a(1+r) 上の図から、3年度末には α(1+r)+α(1+r)2+α(1+r) 円になる。 これをもとに, n 年度末の元利合計を和の形で表そう。 解答 各年度初めの元金は,1年ごとに利息がついて(1+r)倍と ← α円は なる。 D にα ( 1 + r) 円, よって,第1年度初めのα円は第n 年度末には α(1+r)"円, 第2年度初めのα円は第n年度末にはα(1+r)1円 2年後にα(1+r)2円, となる。ゆえに、求める元利合計Sは,これらすべての和で S=a(1+r)"+a(1+r)"-1++a(1+r) (F) これは, 初項 α(1+r), 公比 1+r, 項数nの等比数列の和で あるから, 求める元利合計は (1+r)-1 S= a(1+r){(1+r)"-1}__a(1+r){(1+r)"−1} (円) r PRACTICE 128 ......n …… 年後にα(1+r)" 円になる。 α(1+r) を初項, α(1+r)" を末項とする。 Jei

未解決 回答数: 1
英語 高校生

内容的には間違ってないか。文法は合っているか。の2点で英文を見てもらいたいです。全部で5文で、対話の穴埋め問題です。 ⤵︎ ⤵︎私が描きたかったことです。 1、電気を変えるのを手伝って欲しい 2、あなたの誕生日は2月25じゃなかった?(2月のスペルが間違ってます🙇‍♂️)... 続きを読む

II. 以下に指示された二人の対話を完成させるのに, 最もふさわしいと考えられる 英文を6語以上で書きなさい。 1) A: I'm thinking about changing the design of my bedroom. B: What were you thinking of doing? A: ( ) B: That will really brighten the atmosphere of the room. Let me know if you need a hand. : 2) A Hi, George. Happy birthday! B: Huh? What do you mean? It's not my birthday today. A: ( ) B: No, it's the 25th of March. But, that's okay. You can say it to me again next month. 3) A Did you hear that Tracey and Belinda decided to get married? B Yes, Belinda called me last night. It's wonderful news. We need to think about a present. A: ( ) B: That's a great idea; they both love entertaining at home. 4) A Why were you late this morning? B Well, there was no room to leave my bicycle at the station. A Really? Were all the spaces taken? B: Yes. I think people should be able to leave their bicycles anywhere. A: ( ) 5) A Don't you think John did really well in the debate contest? B: Yes, I was surprised. He is usually quite shy.

回答募集中 回答数: 0
数学 高校生

なぜこの計算をするのかが分かりません 詳しく教えてください🙏

301 質を求めよ。ただし ■西大] 基本186190 つるから場合分けを 境目となる。 (2a) (2a)3-3a(2a)+5a³ Ba³-12a³+5a³ 000192 区間全体が動く場合の最大・最小 ①のののの (x)=10x+17x+44 とする。 区間 asxsa+3 におけるf(x)の 最大値を表す関数g(α) を, αの値の範囲によって求めよ。 SMART QTHINKING 最大・最小 グラフ利用 極値と端の値に注目 曲が変わると 区間 a≦x≦a+3 が動くから, αの値によって場合分けする 目はどこになるだろうか? 場合分けの境目はどこ 基本 190 yef(x) のグラフをかき, 幅3の区間 a≦x≦a+3 を左側から移動させながら考えよう。 大値をとるxの値が区間内にあるか, 区間の両端の値(α) f(a+3) のどちらが大 きいかに着目すればよい。 f(a)=f(a+3) となるαの値も境目となることに注意。 (x)=3x-20x+17=(x-1)(3x-17) a+3 <1 すなわち a < 2 のとき 17 x (x) = 0 とすると ... 1 17 x=1, 増減表から,y=f(x) のグラフは右下のようになる。 3 3 f'(x) + 0 - 0 + f(x) 極大 極小 小値をとるxの値 y=f(x)| 44 間に含まれる場合 g(a)=f(a+3)=(a+3)3-10(a+3)2 + 17 (a +3) +44 =a3-a²-16a+32 [2] at 3≧1 かつ α <1 すなわち -2≦a <1 のとき g(a)=f(1)=52 21 のとき,α)=f(a+3) とすると 整理すると a10a2+17a+44-a³-a2-16a+32 9a2-33a-12=0 最小 2a 3 x って (3a+1)(a-4)=0 a≧1 から a=4 17 3 7.1 直をとるxの値 [3] 1≦a <4 のとき g(a)=f(a)=a-10a² +17a+44 15.6 含まれない場合 [4] 4≦a のとき g(a)=f(a+3)=α-α-16a+32 4 [2] [1] y y=f(x); y y=f(x); [3] y | y=f(x); [4] y=f(x) 52 27 最小 Fa+3 32a x O 0. a1a+317 x 3 a a+3 6章 21 関数の値の変化 0 a. La+3 4 7 。g(a) [岡山大〕 a=4 のとき, 最大値を異なるxの値でとるが, xの値には言及していないので, 4≦α として [4] に含めた。 PRACTICE 1926 す関数 g(α) を αの値の範囲によって求めよ。 /(x)=2x-9x2+12x-2とする。 区間 a≦x≦a+1 における f(x) の最大値を表

回答募集中 回答数: 0