学年

教科

質問の種類

数学 高校生

解法は大体あっていたのですが、回答5〜7行目においてxの範囲を出す理由がわかりません。回答よろしくお願いします。

基本 例題 118 2次不等式と文章題 0000 立方体Aがある。 A を縦に1cm縮め, 横に2cm縮め,高さを4cm伸ばし直 方体Bを作る。 また, A を縦に1cm伸ばし, 横に2cm 伸ばし, 高さを2cm 縮 めた直方体を作る。 Aの体積が,Bの体積より大きいがCの体積よりは大き くならないとき,Aの1辺の長さの範囲を求めよ。 指針 ①大小関係を見つけて不等式で表す 不等式の文章題では,特に,次のことがポイントになる。 ②解の検討 基本117 まず、立方体Aの1辺の長さをxcmとして(変数の選定),直方体B,Cの辺の長さ それぞれxで表す。そして、体積に関する条件から不等式を作る。 199 なお、xの変域に注意。 CHART 文章題題意を式に表す 表しやすいように変数を選ぶ 変域に注意 3 3章 立方体Aの1辺の長さをxcmとする。 2 解答 直方体B, 直方体Cの縦, 横, 高さはそれぞれ 直方体B: (x-1)cm, 不 (x-2)cm, (x+4)cm 直方体C: (x+1)cm, (x+2)cm, (x-2) cm 各立体の辺の長さは正で,各辺の中で最も短いものは 02 (8-5)( (x-2)cm であるから x-2>0 すなわち x 2. ① ...... (Bの体積) < (Aの体積) ≧ (Cの体積)の条件から (x-1)(x-2)(x+4)<x≦(x+1)(x+2)(x-2) x3+x2-10x+8<x≦x'+x-4-4... (*) ゆえに よって x²-10x+8<0. ... ****** xの変域を調べる。 2005,0 Jeb PはQより大きくない を不等式で表すと P≦Q 等号がつくことに注意。 ②かつx-4x-4≧0 ③ (*)はどの項が消えて x²-10x+8=0 の解は x=5±√17 ゆえに、②の解は 5-√17 <x<5+ √17 x2-4x4=0の解は よって、③の解は ④ x=2±2√2 x²-10x+8<0≦x2-4x-4 と同じ。 また, P<Q P<Q≦R⇔ Q≤R x≦2-2√22+2√2≦x ①, ④ ⑤の共通範囲は 2+2√2≦x<5 + √17 以上から、立方体Aの1辺の長さは ...... ⑤ 2-2√2 2 2+2√2 5+√17 x 2+2√2cm以上5+√17cm 未満 5-√17

未解決 回答数: 1
生物 高校生

組換え価を求めるときの式がどうしてこうなるのか知りたいです。例えばYとRB間で➕➕対➕RB対Y➕対Y RBを求める時に➕➕➕と➕ct➕を足している意味がわからないです。

Date 問3F2 の表現型の表を, 遺伝子記号で表すと右のようになる。 2組の対立遺伝子に着目して個体数を数え, 組換え価を求める。 〔+ + + 〕 個体と [y ct rb] 個体の数が多いことから,これ以 外は組換えによって生じたものである。 Chapter (1) y-rb 2 [++]:[+rb]:[v+]:[y rb] =410+57:32 + 3:36 + 4:397 +61 |組換え価= (2)y-ct間 35 +40 ×100=7.5[%] 1000 〔++]:[+ct]:[y+]:[y ct] = 410 +3:57 +32 : 61+36: 表現型 + + +] [yct rb] [v + rb] 個体数 410 397 61 [ + ct + ] 57 [v + + 36 [+ct rb] 32 [yct+] 4 [ + + rb] 3 合計 1000 397 +4 89 +97 |組換え価 = ×100=18.6〔%〕 1000 142 (3) ct-rb [++]:[+yb]:[ct+〕: 〔ct yb〕 = 410 +36:61 + 3:57 + 4:397 +32 組換え価= 64+61 1000 x100=12.5〔%〕 問4 問3の組換え価を,X < Y, Z=X+Yの条件にあてはめると, Xは7.5 Y は 12.5 Zは20となる。 またアはy, イはrb, ウはctとなる。 問5 遺伝子間の距離が大きくなると乗換えが起こりやすくなるが、中には2回の乗換え (二重乗換え)が起こる場合もある。このとき, 両端の遺伝子は見かけ上組換えが起こっ ていない。そのため最も離れている遺伝子間の組換え価は,残り2つの組換え価の合計 よりも小さくなる(Z < X + Y となる) 1 〔茶体・赤眼〕 ⑥ 〔茶体・紫眼〕:② 〔黒体・赤眼〕 ② 〔黒体・紫眼〕: ③ 2④ 313% [解説] 問1 〔茶体・赤眼] の雄と 〔黒体・紫眼]の雌を交配して生まれた個体はすべて 型と一致したことから, 茶体・赤眼が顕性形質であり,伴性遺伝でないことが ぜならば、伴性遺伝であれば生まれた雄は黒体・紫眼になるはず ここで,それぞれの遺伝子記号を 茶休・

回答募集中 回答数: 0
物理 高校生

物理の電磁気、交流回路についての質問です。 (4)、(6)についてです。 僕は(2)で求めた電流についてのtの関数を積分してQ=CVに代入、同じく微分してV=L*(di/dt)に代入してそれぞれコンデンサーとコイルにかかる電圧をtの関数で表してからその関数の最大値を√2で割... 続きを読む

100 /10 10 7 100 (センター試験) 130 図1のように,抵抗値 R の抵抗,電気容量 C のコンデンサーおよ び自己インダクタンスLのコイルを直列に接続し, 交流電源につない だ回路がある。 オシロスコープで抵抗の両端の電圧を観測したところ, 図2のような周期T, 最大値 V の正弦曲線であった。 オシロ 電圧 スコープ Vo--- T m 2 T 抵抗 コイル 0 コンデンサー f t 時刻 - Vol 図2 図 1 (1) 交流の角周波数を求めよ。 以下, (5) 以外はTの代わりに を用いて答えよ。 (2) (3) この直列回路での消費電力 (平均電力) を求めよ。 また実効値を求めよ。 抵抗に流れる電流を時刻tの関数として表せ。 (4) コンデンサーにかかる電圧の実効値を求めよ。 また, 電圧 vc を時 刻tの関数として表せ。 (5)図2で,コンデンサーにかかる電圧が0になる時刻を Ost ST の範囲で求めよ。 (6)コイルにかかる電圧の実効値を求めよ。 また,電圧 v を時刻tの 関数として表せ。 \(7) 電源電圧の最大値 V, を求めよ。 また, ab間の電圧の最大値を 求めよ。 + (富山大 上智大 )

未解決 回答数: 1
生物 高校生

解説お願いします!! 答えは⑤です!

曲がって結合 直線状に結合 皮では 吸収 った。 チューブリン βチューブリン 体1」 ,「ナト 品物質( チューブリン 2量体 中間体 微小管 図4 微小管の形成と中間体の曲がり具合 (曲率)との関係を調べるために,次の溶液 1~3 を準備し、後の実 験と観察を行った。 なお, 変異型 β チューブリンとは, 野生型βチューブリンとくらべて、自身以外のチュー ブリンと結合しやすくしたものである。 溶液1 αチューブリン, 野生型βチューブリン, GTP を混合した溶液 溶液 2 αチューブリン, 野生型β チューブリン, GDP を混合した溶液 溶液 3 αチューブリン, 変異型 β チューブリン, GTP を混合した溶液 実験 溶液 1~3を37℃に保ち、 多数のチューブリン 2量体が結合する反応を行わせた。 図5は、それぞ微1.0- れの溶液中における微小管の形成量(相対値)を60 分間にわたって測定した結果を示したものである。 なお, 図5 中のグラフ XZは, それぞれ溶液 1~3 量 のいずれかである。 微小管の形成量(相対値) 0.5円 観察 溶液1~3のそれぞれにおいて形成された 中間体を観察した。 図6は, それぞれの溶液で みられた中間体の形成量 (相対値)を曲率 (相対 値)ごとに示したものである。 なお, 曲率の値が 大きいほど曲がり具合が大きく, 値が10以下 のものは直線状とみなしてよいものとする。 20.4 Z 30 60 図5 時間(分) 直線状 溶液3 溶液1 体 0.3 0.2- 0.1 中間体の形成量(相対値) 溶液2 0 10 20 30 40 50 60 70 80 図6 中間体の曲率 (相対値)

回答募集中 回答数: 0