学年

教科

質問の種類

化学 高校生

⑶は2.5/0.02ではどうしてダメなんですか?

ON 分数で答え に少量 される。 …..① , その での れよ。 ) 良 リード D 応用例題 28 酸化還元滴定 153,154 解説動画 H2O2 濃度が未知の過酸化水素水 20.0mLに硫酸を加えて酸性にしたのち, 0.0400 mol/L の過マンガン酸カリウム水溶液で滴定したところ, 10.0mL を加え たところで反応が終了した 次のようにはたらいている。 とき、過酸化水素および過マンガン酸カリウムは H2O2 → O2 +2H+ +2e- MnO4- +8H+ + 5e → Mn²+ +4H2O (1) ①式, ②式より,この反応のイオン反応式をつくれ。 (2) 過マンガン酸カリウム 1.0mol と過不足なく反応する 過酸化水素は何mol か。 DATACRI (3) 過酸化水素水の濃度は何mol/Lか。 (4) この実験では, 褐色のビュレットを用いる。その理由 を答えよ。 (5) 反応の終点はどのようにして判断するか, 説明せよ。 (3) KMnO4 H2O2 の物質量をもとに等式を立てる。 解答 (1) ①式×5+②式×2より, 5H2O2 502 + 10H+ + 10e- 09/+) 2 MnO₂¯ +16H+ +10e¯ 2MnO4 + 5H2O2 +6H+ (2) 酸化剤と還元剤が過不足なく反応するとき, (KMnO4 の物質量): (H2O2 の物質量) =2:5 (1) ①式, ② 式中のe-の係数を等しくして各辺を加え, e を消去する。 (2) (1)で求めたイオン反応式の係数の比から求める。 …..① 1.0mol x1 = 2.5mol 答 2 (3) H2O2 水の濃度を x [mol/L] とすると, 10.0 0.0400 mol/L× 5 1000 LX → 2Mn²+ + 8H2O 2Mn²+ + 50 +8H2O 20.0 -=x [mol/L] x- 第6章■酸化還元反応 79 KMnO4 の物質量 x=0.0500 mol/L答 別解酸化剤と還元剤が過不足なく反応するとき, 1000 LO 係数の比 H2O2 の物質量 マイ L×5=x [mol/L] x- 20.0 1000 Ditx5 ②式×2 過マンガン酸 カリウム水溶液 -褐色の ビュレット -濃度未知 の過酸化 水素水 ŐM 酸化剤が受け取る e の物質量=還元剤が失うの物質量 の関係が成りたつので,H2O2 水の濃度を x [mol/L] とすると, 0.0400 mol/Lx 10.0 1000 LX2 KMnO4 が受け取る e- の物質量 H2O2が失うの物質量 x = 0.0500 mol/L (4) 過マンガン酸カリウムが, 光によって分解されやすいから。 (5) MnO4の赤紫色が消えず,わずかに残るようになったときが終点である。 Ear N\tom (1) 100 (P) (at 第2編

回答募集中 回答数: 0
数学 高校生

EX76の問題を標問135の研究と同じ解き方で、3x+2y=6nを両辺6で割ってx/2+y/3=nになってx=2k、x=2k-1で場合分けして解くことはできますか。

無問 135 格子点の個数 I, y, z を整数とするとき, ry平面上の点(x,y) を2次元格子点, TYz 空 間内の点(x,y,z) を3次元格子点という.m,nを0以上の整数とすると き,次の問いに答えよ. (1) 2012/21/ysm をみたす 2次元格子点(x,y) の総数 + を求めよ. (2) x0,y0,z≧0かつ 1/3+1/13y+zan をみたす 3次元格子点 (x,y,z) の総数を求めよ. (名古屋市立大 ) ・精講 (1) 格子点をどう数えるかが問題で す。研究でx=(一定) となる直 線上の格子点を順次数えてみましたが, 大変です. そこで合同な三角形を付け足して長方形にしてみ たらどうでしょう. (2) z=(一定)となる平面による切り口を考え ると (1) が利用できます。 〈解答 (1) 0(0,0),A(3m, 0), B(3m, 5m),C(0, 5m) とおくと, 与えられた領域は △OACの周および内部である. △OAC≡△BCA であり,線分 AC 上には (0, 5m), (3, 5(m−1)), (6, 5(m-2)), ···, (3m, 0) のm+1個の格子点がある. =1/12 (15) 1 (2) ²/3x+//y+z<n & {√x+} {y≤n-z 求める2次元格子点の総数Sは, 長方形 OABC の周および 内部にある2次元格子点の総数を T, 対角線AC上の2次元格 子点の総数をLとおくと 0 S=1/12(T_L)+L=1/12(3m+1)(5m+1)-(m+1)}+(m+1) -(15m²+9m+2) 解法のプロセス (1) 三角形内の格子点の総数 ↓ 長方形を考える (2) z=(一定) 平面による切 り口を考える と変形する. z(z=n,n-1, n-2, ..., 0) を固定し, 303 3n x n y+ 5mm 0 -n-m B 3m HA IC 5n 第8章

回答募集中 回答数: 0
生物 高校生

これの解説をして欲しいです

12497 SICE Date 一粒系コムギ(AA) と野生型コムギ(BB) が交雑してできた雑種1 (AB) から二粒系コムギ (AABB) が生じた。 さらに二粒系コムギとタルホコムギ(DD) の間の雑種2 (ABD) をもとに パンコムギ(AABBDD) が出現した。 雑種1から二粒系コムギが, 雑種2からパンコムギが 出現する際に, 倍数化が起こったと考えられている。 雑種1と雑種とでは正常な減数分裂は 行われないが,それらに起源する二粒系コムギとパンコムギでは,いずれも倍数化によって 正常な配偶子形成が行われるようになった。 雑種1と雑種2では正常な減数分裂が行われないのはなぜか。 その理由を40字以内で説 明しなさい。 一粒系コムギ(ヒトツブコムギ) AA 雑種 1 AB 野生型コムギ (植物名は不明) BB 倍数化 粒系コムギ(マカロニコムギ) AABB 雑種2 ABD srch/ex/data/2019/10/s01/s10191501k0.html タルホコムギ DD 倍数化 パンコムギ (普通系コムギ) AABBDD 間 8. 相同染色体の対合が起こらないため、 染色体が正常に娘細胞に分配されないから。 125 (37字) 間 8. 減数分裂第一分裂では, 相同染色体が対合し、 別々の娘細胞へと分離する。 雑種1の細胞には AとBの染色体が1本ずつしかないため,これらの染色体は対合・分離が正常に行われない。 雑1の倍数化によって生じた二粒系コムギは, AとBの染色体が2本ずつあるため、 それぞ れ相同染色体として対合し、正常に娘細胞へと分配される。

回答募集中 回答数: 0
数学 高校生

問二を教えてください!!

1 | データの分析を利用した問題の解決 これまで学んできたデータを分析する方法を活用して,実際に身の回り や社会の事象について考察し,問題を解決することを考える。問題解決の 進め方として,次の5つの過程からなる枠組みがよく用いられる。 3 周題(Problem) 問題の把握と設定 疑問や解決すべきことに対し,それらに関連があると思われる事柄を 検討して, データを利用して解決できそうな明確な問題を設定する。 5 計画(Plan) データの想定, 収集の計画 問題の考察に必要なデータを集めるために調査や実験の計画を立てる。 10 アンケート調査であれば調査の対象や質問の項目などを考え, 実験で KI あればデータを測定する方法や手順などを考える。 公的機関や企業などが公表している既存のデータを活用することも考 えられる。その際は,データの信頼性や調査方法などに注意する。 ③ データ (Data) データの収集、表への整理の 計画に沿ってデータを収集し,必要に応じて表などに整理する。 記入 や測定にミスがあれば, 値を修正したりデータから除外したりする。 ④ 分析 (Analysis)... グラフの作成, 特徴や傾向の把握 こう DE DEUS OF 目的に応じてデータの特徴を数値やグラフに表し, データの分布の様 子やデータどうしの関連性を調べたり,それらを比較したりする。 2 結論付け,振り返り ⑤ 結論 (Conclusion) 分析の結果から、 設定した問題についてどのようなことがいえるか考 える。十分な結論が得られない場合は,計画を見直したり、 異なる方 法で分析したり,新たな問題を設定したりして,さらに考察を深める。 ... 15

回答募集中 回答数: 0
数学 高校生

問一を教えてください!お願いします!!!

1 | データの分析を利用した問題の解決 これまで学んできたデータを分析する方法を活用して,実際に身の回り や社会の事象について考察し,問題を解決することを考える。問題解決の 進め方として,次の5つの過程からなる枠組みがよく用いられる。 1 問題 (Problem) 問題の把握と設定 疑問や解決すべきことに対し,それらに関連があると思われる事柄を 検討して,データを利用して解決できそうな明確な問題を設定する。 計画 (Plan) データの想定, 収集の計画 問題の考察に必要なデータを集めるために調査や実験の計画を立てる。 アンケート調査であれば調査の対象や質問の項目などを考え, 実験で あればデータを測定する方法や手順などを考える。 公的機関や企業などが公表している既存のデータを活用することも考 えられる。 その際は, データの信頼性や調査方法などに注意する。 ③ データ (Data) データの収集、表への整理 計画に沿ってデータを収集し,必要に応じて表などに整理する。 記入 や測定にミスがあれば, 値を修正したりデータから除外したりする。 グラフの作成, 特徴や傾向の把握 ④ 分析 (Analysis) 06. GE 目的に応じてデータの特徴を数値やグラフに表し、データの分布の様 子やデータどうしの関連性を調べたり,それらを比較したりする。 ⑤ 結論 (Conclusion) 結論付け 振り返り 分析の結果から, 設定した問題についてどのようなことがいえるか考 える。十分な結論が得られない場合は,計画を見直したり,異なる方 法で分析したり,新たな問題を設定したりして,さらに考察を深める。 ... 10

回答募集中 回答数: 0
英語 高校生

英文がわからないです心の優しい方、英文の解き方を教えて欲しいです🙇‍♀️

35 15 20 signatures in business. However, no one used fingerprints in crime work until the late In ancient times, people used fingerprints to identify people. They also used them as 1880s. Three men, working in three different areas of the world, made this possible. (1) The first man who collected a large number of fingerprints was William Herschel. He worked for the British government in India. He took fingerprints when people (7) official papers. For many years, he collected the same people's fingerprints several times. He made an important discovery. Fingerprints do not change over time. At about the same time, a Scottish doctor in Japan began to study fingerprints. Henry Faulds was looking at ancient Japanese pottery* one day when he noticed small It occurred to him that the lines were 2,000-year-old fingerprints. Faulds wondered, "Are fingerprints unique to each person?" He began to take fingerprints of all his friends, co-workers, and students at his medical school. Each print was (). He also wondered, "Can you change your fingerprints?” shaved the fingerprints off his fingers with a razor to find out. Would they grow back lines on the pots. (2) He the same? They did. One day, there was a theft in Faulds's medical school. Some alcohol was missing. Faulds found fingerprints on the bottle. He compared the fingerprints to the ones in his records, and he found a match. The thief was one of his medical students. By examining fingerprints, Faulds solved the crime. Both Herschel and Faulds collected fingerprints, but there was a problem. It was very difficult to use their collections to identify a specific fingerprint. Francis Galton in England made it easier. He noticed common patterns in fingerprints. He used these to help classify fingerprints. These features, called "Galton details," made it easier for police to search through fingerprint records. The system is still in use today. When 25 police find a fingerprint, they look at the Galton details. Then they search for other fingerprints with similar features. (4) Like Faulds, Galton believed that each person had a unique fingerprint. According to Galton, the chance of two people with the same fingerprint was 1 in 64 billion. Even the fingerprints of identical twins are ( ). Fingerprints were the perfect tool to 30 identify criminals. For mo than 100 years, no one found two people with the same prints. Then, in 2004, terrorists (I) a crime in Madrid, Spain. Police in Madrid found a fingerprint. They used computers to search databases of fingerprint records all over the world. Three fingerprint experts agreed that a man on the West Coast of the United States was one of the criminals. Police arrested him, but the experts were wrong. The man was innocent. Another man was (). Amazingly, the two men who were 6,000 5 10 136 Lesson 日本大学 470 words 22 (3) 23 024 25 26

回答募集中 回答数: 0