学年

教科

質問の種類

数学 高校生

(2)の部分でオレンジで線を引いている部分が分かりません😭教えてください

<k ) 20 2次不等式/ 「すべて」 と 「ある」 がらみ aを実数とし,f(x)=x2-4ax+a, g(x)=-ューSax+3a とする. (1) すべての実数に対しf(x)≧g(x) であるためのαの条件を求めよ。 賢 (2) ある実数x (1≦x≦2) に対しf (x) ≧g(x)であるためのαの条件を求めよ. (3) すべての実数 1, T2 に対しf (m) > g (x2)であるためのαの条件を求めよ. (4) f(x)≧g(z) がすべての実数xについて成り立ち、かつf(x)≦g(x2)である実数x1, I2 が存在するためのαの条件を求めよ. 条件を言い換える (大阪医薬大医,改題) 不等式f(x)≧g(x)は; 左辺にェを合流させた形f(x)-g(x)≧0にした ほうが式変形の可能性が出てくる. 一方,不等式(≧g (m2) は, f(x) -g (m2) ≧0と合流させて も (1) 2 は実数とする. が同じではないので式変形の可能性はない。以下,,, 「すべてのxに対しf(x)≧g(x)」「すべてのに対しf(x)-g(x)≧0」 「f(x) -g (z)の最小値≧0」 これは,前問と同じタイプである。 (2) 「あるπに対しf(x) ≧g(x)」 ⇒ 「あるæに対しf(x)-g(x)」 たば 「f(x)-g(x)の最大値≧0」 (うまい』を選べば,f(x) -g (z)が0以上になる) 「すべてのπ1, I2 に対しf (x1) >g (x2)」 (1) D (3) (下) ⇔ 「f(x)の最小値>g(x) の最大値」(どんな組 z1, T2 でも成立しなければならないから) (4) 「ある π1, r2に対しf (x1) ≦g(x2)」(うまい組 1, 2 を選べばf(x) ≦g(x2)) グラス& FCK ⇔ 「f(x) の最小値≦g(x) の最大値」 (なお、 「x1,x2が存在する」=「あるπ1, 2 に対し成立」) 圜解答圜 h(x)=f(x)-g(x)=2x2+4ax-2a=2(x+α)2-2a22a (1) h (x)の最小値-242-2αが0以上であることと同値であるから, A-2a2-2a≥0 ... a(a+1)≦0 .. -1≤a≤0 (2) 1≦x≦2におけるh (x) の最大値が0以上であることと同値である. x=1またはx=2で最大値をとるから,その条件は, h(1) ≧0または(20 .. 2a+20 または 6α+8≧0 .. a≧-1 または a≧- 4 3 4 3 (1) y=h(x) -a x 28.01 (2) y=h(x) (3) f(x) の最小値をm, g(x) の最大値をMとすると, mM と同値である. ここで,f(x)=(x-2a)2-4a2+α, g(x)=-(x+4a)2 + 16a2+3a であるから,m=-4a2+α, M=16a2+3a >Mにより, -4a2+α>16a2+3a 0>> (ウ) .. 20α²+2a<0 .. α(10a+1)<0 ① <a<0 10 (4) f(x)≦g(x2) である実数 11, T2 が存在する条件は,≦Mと同値. これは①のを≧に代えたものと同値であり,これと(1)とから, гa≤- 1 1 または 0≦a」かつ「-1≦a≦a≦ または α = 0 10 10 20 演習題 解答はp.63 ) (3) |y=f(x) x=2a すき間 (4) \y=f(x) y=g(x) x=-4a y=g(x) 不等式-2+(a+2)x+a-3<y<x2(a-1)x-2 (*)を考える.ただし, x, y, a は実数とする. このとき, 以下を満たすためのαの値の範囲を求めよ. (1) どんなに対しても,それぞれ適当なりをとれば不等式 (*) が成立する . (2)適当なyをとれば,どんなェに対しても不等式 (*) が成立する. (早大 人間科学) (2) yをまずェとは無 関係に決めなければなら ない. 59 53

未解決 回答数: 1
物理 高校生

なんで(1)や(2)で有効数字が2桁になるんですか

基本問題 29 30 31 ○小球 ① 基本例題6 水平投射 物理 高さ19.6mのビルの屋上から, 小球を水平に速 さ 14.7m/s で投げ出した。 重力加速度の大きさ を9.8m/s2 として、次の各問に答えよ。 14.7m/s (1) 投げ出してから, 地面に達するまでの時間 を求めよ。 濃度を 解説動画 基本問題39 x 第 No. 力学Ⅰ Date ないので, 「v2=2gy] √2×9.82 =13.8m/s 14 m/s 落とした」 とは 初 床である。 の中にある数値を 37. 19.6= 2=4.0 ある。 t = ±2.0s t0 なので2.0s は解答 に適さない。 したがって 2.0s (2) 小球は,ビルの前方何mの地面に達するか。 (3) 地面に達する直前の小球の速さを求めよ。小の 指針 投げ出した位置を原点とし, 水平右 向きにx軸,鉛直下向きにy軸をとる。 小球の運 動は, x方向では等速直線運動, y方向では自由 落下と同じ運動をする。 解説 (1)地面のy座標は19.6mである から,「y=1/29t2」を用いて、高さはいくらか 1/2×9.8× 地面 (2) 地面に達するまでの2.0秒間, 小球は,水平 方向に速さ 14.7m/sの等速直線運動をする。 29 m x=vxt=14.7×2.0=29.4m/ (3) 鉛直方向の速度の成分 vy は, vy=gt=9.8×2.0=19.6m/s 小球の速さ [m/s] は,水平方向と鉛直方向の 速度を合成し,その大きさとして求められる。 =√ox2+vy^2=√14.72+19.62 (4.9×3)+(4.9×4)=4.9√32+42 [m=4.9×5=24.5m/s 25m/s ( 34, 35, 36,37 ① 基本例題7 斜方投射 物理 Sms.es & 基本問題 40 41 42 Em/s/ 水平な地面から,水平とのなす角が30℃の向きに、 速さ40m/sで小球を打ち上げた。 図のようにx軸, *9.8m/s2 として 40m/s JJ \m 30°(1) x 地面 例

未解決 回答数: 1