学年

教科

質問の種類

英語 高校生

全部の間違っているところの解説お願いします 明日までなので至急お願いします

19 次の英語は日本語に、日本語は王線を主語にし、英語に直しなさい。 (23) 1. この旅行の主な目的はローマ (Rome) を訪れることだ。 2. This area is too dangerous to go out in at night. 3. この本は初心者が理解しやすい。 10 ( )に入る最も適切な語句を①~④の中から選び、記号で答えなさい。 (1×10) 2 forget 1. A: I came here for an important meeting with Janet, but she's not here yet. B: She seems rather careless ( ) the appointment. Dto forget forgetting for forgetting 2. Don't expect ( ①me to cover ) for you this time. ②me cover 3me covering 1 cover 3. Juliet was studying the map to decide which route ( ). ①takes ②taking ③to take Dtook 4. This city is easy ( Dfor reaching ) by public transport. 2to be reaching 3 to have been reached to reach ②to 5. They have three dogs to look after, not to ( Dmention ②say ③speak 6. He is prepared to help you if you want him ( Ddo ③it ) the cat and the bird. Otell ). ①do it 7. It was not long before Paul ( Dbecame ②came ) to realize how serious the situation was. ③went ①turned 8. I was ( ①very busy to ) pay attention to what he was saying. ②too busy to ③so busy that 9. To ( ①give ) matters ( ), he got pneumonia after breaking his leg. pause ②take - bad 10. The president of our company is ( ②being delivered ①deliver Dquite busy that ③make - worse Oput double a speech at the party tomorrow. 3delivered Oto deliver

回答募集中 回答数: 0
数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0
生物 高校生

答えがなくて合ってるのか分からないので教えて頂きたいです💦 サッと書いたもので字が汚なく、みにくく、ごめんなさい💦

2 次の図は,光学顕微鏡で観察した細 胞の構造を模式的に示したものである。 (1) (ア)~(オ)の名称を, 次の (a)~(e)から選べ (a) 葉緑体 (b) 細胞壁 5 (C) 細胞膜 (d) 核 (e) ミトコンドリア (2) (1) (a)~(e)のうち, 原核細胞では見ら ウ れないものを3つ選べ。 (3) 真核細胞からなる生物を、次の (a)~(f)からすべて選べ。 10 (a) 大腸菌 (b) ゼニゴケ (C) 乳酸菌 (d) ゾウリムシ (e) 酵母 (f) ネンジュモ (ア) (1) (ア) (イ) (ウ) H (エ) (イ) (オ) (2) (3) p.25,28~29 (オ) 15 3 生物とエネルギーに関する次の文章を読み, 以下の問いに答えよ。 生物は、外界から取り入れたエネルギーを, 生命活動に利用できる形に変 換して利用している。 植物は(a)を,動物は食物に含まれる(b)を取 り入れ、有機物を体内に蓄えている。 有機物に含まれるエネルギーは,(c) という物質に含まれる (b) に変換され, 生命活動に利用される。 (1) 文章中の空欄に当てはまる適当な語句を ① ~ ④から1つずつ選べ。 3 (1) (a) (b) (c) (2) (ア) (イ) (ウ) ① 化学エネルギー ② 光エネルギー ③ ATP p.34 ~41 ④ グルコース (2) 右図は (c)の模式図で, (ア)は塩 210 基, (イ)は糖を示している。 (ア)~ (1) (ウ) ウ (ウ) (ウ)に当てはまる物質名を答えよ。 次の図は, 光合成と呼吸における物質の変化とエネルギーの移動を模式 的に示したものである。 光合成 呼吸 ATP 有機物+ (イ) ATP エネルギー エネルギー エネルギー (A) +リン酸 水+ (ア) (A) +リン酸 (1) (ア)(イ)に当てはまる物質名を答えよ。 生命活動への利用 25 (2)(A)は,ATP からリン酸が1個外れた物質である。 (A)の物質名を答えよ。 (1) (ア) (イ) (2) 5 ⑤ 次の文章のうち、正しいものには○誤っているものには×をつけよ。 (1) (1) 酵素は,タンパク質と基質が結合してできている。 (2) (2) 酵素は反応の前後で変化しないため, くり返しはたらくことができる。 (3) 過酸化水素は,カタラーゼに対して触媒としてはたらく。 30 (4) ミトコンドリアには,細胞の呼吸に関する酵素が存在する。 (3) 34 (4) 1章 p.38~42 p.44~46 51

回答募集中 回答数: 0