学年

教科

質問の種類

数学 高校生

70. AQ:QD=AE:EC=1:1より 点Qは線分ADの中点であるとはどういうことですか? Aから引く直線BCと接する線分はどれも A◯:◯D =AE:ECになるのでは?と思ったのですが (写真2枚目のように)

E E 基本例題10 重心であることの証明 △ABCの辺BC, CA, ABの中点をそれぞれD, E, F とし,線分 FEのEを越 える延長上にFE = EP となるような点Pをとる。 このとき, Eは△ADPの重 心であることを証明せよ。 結論からお迎えの方針で考える。 指針 例えば、右の図で,点G が △PQR の重心であることを示すには, QS=RS (Sが辺 QR の中点), PG:GS =2:1 となることをいえばよい。 この問題でも, 点E が ADPの中線上にあり, 中線を2:1に内分す ることを示す。 S 平行な線分がいくつか出てくるから,平行線と線分の比の性質や中点連結定理 を利用。 CHART 重心と中線 2:1の比辺の中点の活用 解答 △ABC と線分 FE において, 中点連結 定理により =1/BC 2 FE//BC, FE= OHITHJAUS 280 ADとFE の交点を Q とすると QE//DC B また,FEEP であるから 0 F ① ② から、点Eは△ADP の重心である。 A Q/ E D よって AQ:QD=AE:EC=1:1 ゆえに,点Qは線分 AD の中点である。 よって, ADC と線分QE において, 中点連結定理により =1/12DC=1/12×1/2/BC=1/2BC C ・P PE:EQ=FE:EQ=1/2BC://BC=2:1…. ② 検討 重心の物理的な意味 |密度が均一な三角形状の板の重心Gに,糸をつけてぶら下げると, 板は地面に水平につり合う。 基本69 HAA <DC=1/2/BC 問題の条件。 G <中点連結定理 中点2つで平行と半分 平行線と線分の比の性質。 R G 411 3章 0 三角形の辺の比、五心 10 る。

未解決 回答数: 1
数学 高校生

69.1.2 記述に問題ないですか? 問題がないなら、不要な文など(あれば)教えてほしいです。

1410 基本例題 69 重心と線分の比面積比 右の図の△ABC で, 点D, Eはそれぞれ辺BC, CA の中 点である。 また, AD と BE の交点をF,線分 AF の中点を G, CG と BE の交点をHとする。 BE=9のとき (1) 線分 FH の長さを求めよ。 (2) 面積について, △EBC=[ 練習 69 解答 (1) AD, BE は△ABCの中線であるから, その交点 F は △ABC の重心である。 よって ゆえに FE= BE=1/3×9=3 1 2+1 また, CとFを結ぶと, CG, FEは の中線であるか AFC ら、その交点Hは△AFC の重心である。 2 2+1 よって, FH: HE=2:1から FH= 口 (2) △FBC: △FBD=BC: BD =2:1 よって △FBC=2△FBD また △EBC: △FBC=EB: FB=3:2 ゆえに △EBC= BF:FE =2:1 | △FBD である。 指針 (1)点F は △ABCの中線 AD, BE の交点であるから,点Fは△ABCの重心 そこで,三角形の重心は各中線を2:1に内分するという性質を利用し,線分 の長さを求める。次に, 補助線CFを引き, AFC で同様に考察する。 3 2 (2)△EBCと△FBC, AFBCと△FBD に分けると,それぞれ高さは共通である。 よって、 面積比は底辺の長さの比に等しいことを利用する。 -------- まず, △FBC を △FBD で表し,それを利用して △EBC を △FBD で表す。 880064 CHART 三角形の面積比 等高なら底辺の比等底なら高さの比 AFBC p.407 基本事項 ④ =1/3×2. X2AFBD=3AFBD B ×FE= =1/3×3=2 A F D h h E 右の図のように,平行四辺形 ABCD の対角線の交点を 0, 辺BCの中点をMとし, AMとBDの交点を P 線分 OD の中点をQ とする。 (1) 線分PQの長さは,線分BDの長さの何倍か。 (2) △ABP の面積が6cm²のとき m. m 00000 B B かくれた重心を見つけ出す /G F D Pl A A H M 高さは図のんで共通。 ∴ 面積比=BC : BD C 高さは図のん で共通。 面積比=EB:FB 注意: は 「ゆえに」を表す 記号である。 0 Sut ) 指 C △定 定 AI よゆよ ま 944

回答募集中 回答数: 0
数学 高校生

66. BP:PC=AB:ACより BP:PC=AB:ADと言えるのは AC=ADだからですか??

) E 性質。 て方 始めよ 基本例題66 角の二等分線の定理の逆 △ABCの辺BC を AB AC に内分する点をPとする。 このとき, APは∠A の二等分線であることを証明せよ。 KORE & COCK 指針 p.402 基本事項 ② 定理1 (内角の二等分線の定理) の逆である。 題意を式で表すと BP:PC=AB:ACAPは∠Aの二等分線 ( ∠BAP=∠CAP) 線分の比に関する条件から,角が等しいことを示すには,平行線を利用するとよい。 ∠Aの二等分線⇒BP:PC=AB:AC の証明 (p.402 解説)にならい,まず, 辺BA のAを越える延長上に, AC=AD となるような点Dをとることから始める。 別解∠Aの二等分線と辺BCの交点をDとして,2点P, Dが一致することを示す。 なお,このような証明方法を 同一法または一致法という。 3830 解答 △ABCにおいて、辺BAの延長上に点D をAC=AD となるようにとる。 BP: PC=AB:ACのとき, BP:PC=BA: AD から 25 AP // DC ゆえに ACAD から 12/48 ∠BAP=∠ADC 円 BPC ∠PAC=∠ACD ∠BAP=∠PAC すなわち, APは∠Aの二等分線である。 別解 辺BC上の点Pが ① ∠ADC=∠ACD 注意 ②から BP:PC=AB:AC .... (1) を満たしているとする。 ∠Aの二等分線と辺BCの交点をDとすると, 内角の二等 分線の定理により D BETAGA AB:AC=BD: DC ・・・・・・ BP:PC=BD:DC ② 平行線と線分の比の性質の 逆 1390 38 p.402 基本事項 ② 平行線の同位角、錯角はそ れぞれ等しい。 △ACD は二等辺三角形。 031185A U AR DP C B HULA ICA RO よってPとDは辺BCを同じ比に内分するから一致する。 したがって APは∠Aの二等分線である。 中の p.402 基本事項 2② の定理 2 についても逆が成り立つ。 下の練習 66 でその証明に取り組 んでみよう。 GORITO BCの辺BC を AB: AC に外分する点をQとする。 このと 線であることを証明せよ。 405 章 三角形の辺の比、五心 3章 10

回答募集中 回答数: 0