学年

教科

質問の種類

数学 高校生

数1 (一枚目は問題と回答、二枚目は自分で解いた写真です。) 自分で解いたのは回答と全く違うやり方で、答えも違っています。二枚目のどこがダメなのか教えて欲しいです。

例題 1176 等式と値 00000 0°<0 <180°とする。 4cos0+2sin0=√2 のとき, tan0 の値を求めよ。 CHART & SOLUTION 2-in [大阪産大] 基本 113 三角比の計算かくれた条件 sin20+cos20=1 を利用 tan 0 の値は sind, cose の値がわかると求められる。 そこで かくれた条件 sin'0+cos'0=1 を利用して,sine, cose についての連立方程式 4cos0+2sin0=√2,sin'0+cos20=1 →cosを消去し, sin0 の2次方程式を導く。 を解く。 解答 4cos0+2sin0=√2 を変形して 4cos=√2-2sin0 sin20+cos20=1 の両辺に 16 を掛けて 16sin 20 +16cos20=16 ①を② に代入して ・① 4cos+2sin0 = √2 を条件式とみて、条件式 は文字を減らす方針で COSO を消去する。 4章 13 三角比の拡張 t=- 16sin20+(√2-2sin0)²=16 整理して 10sin2-2√2 sin0-7=0 ここで, sind=t とおくと これを解いてt=- よって 10t2-2√2t-7=0 sin √2+√2 (*) 10 √2 7/2150 2 sin10 0°<0 <180°であるから 0<t≤1 (*) 2次方程式 ax2+26'x+c=0 の解は x= -6' ±√b2-ac a fint. sin 0, cos0 どちらを 消去? sin を消去して coseに ついて解くと, 1 0°<0 <180°から これを満たすのは t= 7√2 10 cos 0= 2 の2 10 7√√2 すなわち つが得られるが, sin0= 10 ①から 4 cos 0=√2-2.7√2 √2 co cos = のときは 2 = ゆえに を求めると √2 10 cos 0=- 10 すなわち 2√2 5 sin0 <0となり適さない。 この検討を見逃すこともあ 0 を消去して, 符号が一定 (sin0 > 0) の sin したがって tan0= 7√2 √2 sin を残す方が, 解の吟味 =-7 COS 10 10 の手間が省ける。

解決済み 回答数: 1
数学 高校生

解説お願いします。 (3)で、参考書の解説は理解できたのですが、私の回答はどこで間違えているのか分からないので、間違っている点を指摘してほしいです。 よろしくお願いします。

例題 53 同一平面上にある条件[2] 四面体 OABC において 辺OA の中点を M, 辺BCを1:2に内分する点 を N, 線分 MN の中点をPとし, 直線 OP と平面 ABCの交点を Q, 直線 AP と平面 OBCの交点をR とする。 OA = 4, OB,OC = c とすると き、次のベクトルをa, b, c で表せ。 頻出 (1) OP (2)0Q (3) OR 1:8 例題 23 (2) (2)既知の問題に帰着 例題 23(2) の内容を空間に拡張した問題である。 さ 思考のプロセス m 章 空間におけるベクトル 〔平面〕 Q. A(a),B(b)を通る直線上 〔空間〕 Q... A(a),B(b),C(c) を通る平面上 OQ = k OP ka+ kb a P 4 A Q B OQ = k OP ka+ki+kc A4 ↑ ・和が1 a 0 C P C b ・和が1 B Action» 平面 ABC 上の点P は, OP =sOA+tOB+uOC,s+t+u=1 とせよ (1) OP OM+ON 0 2 点Pは線分 MN の中点で ある。 1 = 2 JA1 1→ a+ C 4 3 1 2b+c a+ - (+26+) 3 -1+1+17 (2)点 Q 直線 OP 上にあるから,OQ=kOPは実数 20 M OM=1/20 -OA P R C 2OB + OC A ON 1+2 とおくと OQ = ka+kb+kc 6 点Qは平面 ABC上にあるから 11/11/2 k=1 k+ 4 点Qが平面ABC 上にあ るから 4 k= 1/3 より OQ= 1→ 4 = = 1½ + ½ + ½ (3)点Rは直線AP 上にあるから, ARIAP (Iは実数) OQ=sOA+tOB+uOC のとき s +t+u=1 OR-OA-1(OP-OA) 2 とおくと OR = (1-1)+1+b+c 13 6 OC 点R は平面 OBC 上にあるから 3 ORはひとこのみで表す 1- 1=0 ことができる。 に 4 20 3 より OR= = 6+ 4 20 9 29 QB を 1:2に内分する点を Q,

解決済み 回答数: 1
数学 高校生

左下半分から右上半分で言っていることって、指数部分は整数しかこないということであってますか?

これで, In-yn=(zo-yo) (2a-1)=(2a-1)" xn+yn=(xo+yo)1" d =1 ©+@ だから, で、 2 スタートならn-1乗ですが co-yo スタートなのでn乗です。 Xn= =1/2(21-1)+1/2 あとは,数列{.xx} が収束するための必要十分条件です。 計画 京大では,極限の問題であっても、「求めよ」ではなく,本間 のように「収束する (必要十分) 条件を求めよ」としてくる場 合がよくあります。 京大らしいですね。 本問ではn→∞で,In の式でnがからんでいるのは (2α-1)” の部分 だから,これは「無限等比数列の極限」になります。これとカン違いしや すいのが「指数関数の極限」で,収束条件がごちゃごちゃになりやすいの が「無限等比級数」です。ここで確認しておきましょう。 まず、「無限等比数列」、 「指数関数の極限」は, 無限等比数列 8 (r>1のとき) limr"=1(r=1のとき) 00-11 0 (-1<r<1のとき) r≦-1のとき{r} は振動 しかし、指数関数のは実数であり,α ≦ 0 はダメです。 たとえば, a=-2, として、dioを勝手に<0の場合に拡張して使うと、 (-2)=√-2=√2i となり虚数になってしまいます。 高校数学では, 実数値を入れたときに実 数値を出す 「実数関数」 しか扱いません (大学に入ると, 複素数に拡張さ れた 「複素関数」を扱います)。 したがって, a< 0 はマズイんです。a=0 は何乗しても0,α=1は何乗しても1だから, α = 0 1 もはずして, んですね。 指数関数では,a > 0, a ≠1で考える ただし、問題で与えられた数式の形によっては, α = 0 やα=1の場合 について, 1=1やO* = 0 (0° は高校では未定義なので除外して考えます) を使って計算することもあります。 次に、「無限等比数列」 と 「無限等比級数」は, ◆無限等比数列の収束条件 数列{r-"}が収束するため の必要十分条件は, -1<r≤1 無限等比級数の収束条件 無限等比級数 a + ar + art...... 無限等比数列の方は,∞と振 動の場合がダメなので, +arn-1+………… が収束するための必要十分条件は, -1<r<1 または α = 0 で,その和は, limr"=1となる1 a -1<r<1のとき, wwwwwww 1-r limr" = 0 となる-1<r<1 wwwwww 指数関数の極限 8 (a>1のとき) limax 0 (0 <α <1 のとき) どちらも●の形なのですが、指数関数ではα=1やa≧0は考えませ ん。 大丈夫ですか? 無限等比数列のnは自然数だから,r≧0であっても OK です。たとえ ば,r=-2なら, (-2)'=-2, (-2)^=4(-2)=-8, のように値が定まります。 11-00 を合わせて, 収束する条件は, -1<r≦1←r=1のときも収束します。 a=0のとき,0 一方,無限等比級数の方は、部分和をS とすると, ●a=0のとき S=0 ∴ lim S=0 (収束) ●a≠0,r=1のとき n→00 Sn=na ... 数列{Sn} は発散 ●a0r1のとき Sn a(1-rn) r=1のときはこの 1-r 公式が使えません。 248 第7章 極限・微分 テーマ32 極限 ① 249

解決済み 回答数: 1