学年

教科

質問の種類

数学 高校生

数II 分数式の問題です。 計算をしたあと分母や分子を簡単に まとめる工程がありますが、 (1)では因数分解した式で終わっているのに (2)はなぜx^4-16に展開するんですか?

事項 ■ 2 AD BC 分解。 基本例題 11 分数式の加法, 減法 次の計算をせよ。 x+1 (1) x2+2x-3 X² 指針 TI 解答 (1) (与式) = = x+1 x2+2x-3 x2-9 = 分母が異なる分数式の加法, 減法では, 分母・分子に適切な多項式を掛けて, 分母を同じにする (通分)。 (1) 各項の分母を因数分解して, 通分する。 (2) そのまま左から順に計算してもよいが, 3つ以上の分数式の加減では, 分数式をう まく組み合わせると, 計算が簡単になる場合がある。 この問題では, xC x2-9 4 x ² + ₁ - (² x ²-2 ²-1 == x+1 x (x-1)(x+3) (x+3)(x-3) (x+1)(x-3)-x(x-1) (x-1)(x+3)(x-3) - (x+3) (x-1)(x+3)(x-3) 1 x+2 (x+1)(x-3) x(x-1) (x-1)(x+3)(x-3) (x-1)(x+3)(x-3) 1 (x-1)(x-3) 練習 次の計算をせよ。 ② 11 (1) 2x+7 x2+6x+8 1 x-4 x2-4 1 (2) ²44-=-=-2+x+2 1 (2) x²44-x=2+x+2=x+²+₁-(x²2=x+2) x2+4 4 x2+4 x² = 4x+3 とみて, () の部分を先に計算するとよい。 4 (x+2)-(x-2) (x-2)(x+2) - 1 A C AD BC + + B D BD BD 4 x2-4 4.(-8) (x2)2-42 4{x2-4-(x2+4)} (x2+4)(x2-4) 32 x¹-16 (2) 1 a+b a-b 00000 = + p.27 基本事項 2 a+b 分母を因数分解 (通分す るための準備)。 (x-1)(x+3)(x-3) が 共通の分母。 約分を忘れないように。 左から順に計算した場合, 最初の2項は 4(x-2)-(x2+4) (x2+4) (x-2) -x²+4x-12 (x2+4)(x-2) となり、後の計算が複雑 になる。 ① 多くの式の和 組み合わせに注意 a-b_2(a²-b²) a² +6² p.34 EX 9. 29 1 章 ③ 分数式とその計算

解決済み 回答数: 1
数学 高校生

紫で線が引いてあるところなんで引き算だとわかるのですか?かけ算して分子と同じ数になるように足し算か引き算か決めると思うのですが...。 だからといって普通に通分して計算すると2xになって4にはならないのですが…。

(2) = = = (1) 解答 = = 基本例題 14 分数式の加法, 減法 (1) 次の計算をせよ。 x+11 x-10 (1) 2x2+7x+3 2x2-3x-2 CHART SOLUTION 分数式の加法, 減法 分母が異なるときは通分する ・・・・・・ x+11 x-10 2x2+7x+3 2x2-3x-2 x+11 x-10 (x+3)(2x+1) (x-2)(2x+1) 4 x2+4 4 x2+4 (x+11)(x-2) (x−10)(x+3) (x+3)(2x+1)(x-2) (x-2)(2x+1)(x+3) (x²+9x-22)-(x² −7x−30) (x+3)(x-2)(2x+1) 8(2x+1) 4 x2+4 (1) 2x2+7x+3=(x+3)(2x+1)] 通分すると分母は 2x2-3x-2=(x-2)(2x+1)| (x+3)(x-2)(2x+1) (x+3)(x-2)(2x+1)(x+3)(x-2) 4.(-8) (x2)2-42 (2) そのまま左から順に計算してもよいが,3つ以上の分数式の加減では, 数式を適当に組み合わせると、計算が簡単になる場合がある。 この問題で 1 x-2 x-2 4 x2-4 4 (与式)=(2x+2) とみて、()の部分を先に計算するとよ \x-2 + = x+2 x+2 4 (2) x²+4 8 = 32 x-16 4 x2+4 16x+8 (x+3)(x-2)(2x+1) 1 x-2 4{x2-4-(x2+4)} (x²+4)(x²-4) (x+2)-(x-2) (x-2)(x+2) ・+ Eto 1日 x+2 ((1) 駒 Ip.21 基本 ◆ まず分母を因数 ◆通分する。 = 分子を因数分解。 は展開しなくてよ 左から順に計算し 合、最初の2項に 4(x-2)-(x2+ (x²+4)(x-2 -x²+4x-12 (x+4)(x-2) となり、後の計算 になる。

回答募集中 回答数: 0