学年

教科

質問の種類

数学 高校生

121.1 a-c-(b-d)=m(k-l)なら a-c≡b-d (mod m(k-l))になりませんか??

494 演習 例題 121 合同式の性質の証明と利用 00000 (1) か.492 基本事項の合同式の性質 2、および次の性質を証明せよ。 ただし は整数, m は自然数とする。 5aとが互いに素のとき ax=ay (modm)⇒x=y (modm) (2)次の合同式を満たすxを,それぞれの法mにおいて, x=a(mod m) [a は mより小さい自然数] の形で表せ(これを合同方程式を解くということがある)。 (ア)x+4=2 (mod 6 ) (イ) 3x≡4 (mod 5 ) 指針 pp.492 基本事項 ③3 (mod m) のとき, -■はmの倍数である。 合同式 加法・減法・乗法だけなら普通の数と同じように扱える (イ) 「4 (mod 5) かつ 指針▷ (1) 方針はp.493の証明と同様。 (2) 解答 (1) 2 条件から, a-b=mk,c-d=ml (k, lは整数) と表され 性質を適用する。 が3の倍数」となるような数を見つけ, a=b+mk, c=d+ml よって a-c=(6+mk)-(d+ml)=b-d+m(k-l ゆえに a-c-(b-d)=m(k-1) (2) (ア) 与式から 5ax=ay (modm) ならば, ax-ay=mk(kは整数)と表 され a(x-y)=mk aとは互いに素であるから x-y=ml (lは整数) よってx=y (mod m) x=2-4 (mod 6 ) 24 (mod6) であるから (イ) 49 (mod5) であるから、与式は 法5と3は互いに素であるから ...... よって a-c=b-d (modm) x=4 (mod 6 ) 3x=9 (mod 5) x=3 (mod 5) の倍数 → = ▲k(kは整数) <pg が互いに素でpk が g の倍数ならば k はgの倍数である。 検討 合同方程式の問題は表を利用すると確実 (2)(イ)については, 次のような表を利用する解答も考えられる。 別解 (イ)x=0, 1,2,3,4について, 3xの値は右の表 のようになる。 3x=4 (mod5) となるのは, x=3のと きであるからx=3 (mod5) 注意 合同式の性質5が利用できるのは, 「aとが互いに素」であるときに限られる。 例えば, 4x=4 (mod6) ① については, 4と法6は互いに素ではないから, ①よりx=1 (mod6) としたら誤り! 性質2。 移項の要領。 -2-4-6 ( 6の倍数) また, 推移律を利用。 性質を利用。 XC 01 2 3 4 3x 0 3 6=1 9=4 12=2 2 表を利用の方針で考えると,右の表からわか るように x=1, 4(mod 6 ) である。 x = (mod m) またはx=6 (modm) を x=a,b (modm)」と表す。] x 0 1 3 4 5 4x 0 4 8=2_12=0_16=4 20=2 漢 練習 (1) p.492 基本事項の合同式の性質 を証明せよ。 ③ 121 (2) 次の合同式を満たすxを, それぞれの法mにおいて, x=a (mod m) の形で 表せ。 ただし, a はより小さい自然数とする。 (ア) x-7=6 (mod 7 ) (イ) 4x5 (mod11) (ウ) 6x=3 (mod 9 ) (1 IC (1) F

未解決 回答数: 1
数学 高校生

多項式の除法です。 2xの2乗をX-3で割ることはできないから、-7Xの上に2Xじゃないのでしょうか??

15 10 20 25 5 15 20 5 10 3| 多項式の除法 これまでは, 多項式について,加法,減法,乗法を考えてきた。ここで は, 多項式の除法を考えてみよう。 .81 + =A 整数について,余りを考慮した除法を考えた。 多項式についても、余り を考慮した除法を考えることができる。 まず, 整数の除法を振り返ろう。 例えば,172を7で割ると商は 24, 余りは 4である。 このとき 172 = 7×24 + 4 ← 割る数 × 商 + 余り である。 同じような計算を多項式で行うこと を考えてみよう。 例8 注意 1節多項式の乗法・除法と分数式 問14 2x-1 x-32x²2-7x+5 2x² - 6x 24 7)172 ・(x-3) ×2x 140・・・ 32 ・7×20 多項式 A=2x²-7x+5, 多項式 B=x-3のとき, AをBで 割る計算は次のように考える。 -x+5 -x+3. (x-3) × (-1) 2 28・・・ 4 7x4 最後の行に現れた2は, 割る式x-3よりも次数が低いから, これ以上計算を続けることはできない。 このとき, AをBで割ったときの商は2x-1, 余りは2である という。 上の計算から、 次の式が成り立つことが分かる。 A =Bx (2x-1)+2 割式x+余り ① このような計算では,割る式も割られる式も, 文字xについて降べきの順に整 理しておくとよい。 多項式 3x²+2x+1を多項式3x-4で割り, 商と余りを求めよ。 また、例8にならって, 多項式3x²+2x+1 を ① の形に表せ。 13 1章 章 方程式・式と証明

回答募集中 回答数: 0
数学 高校生

紫で線が引いてあるところなんで引き算だとわかるのですか?かけ算して分子と同じ数になるように足し算か引き算か決めると思うのですが...。 だからといって普通に通分して計算すると2xになって4にはならないのですが…。

(2) = = = (1) 解答 = = 基本例題 14 分数式の加法, 減法 (1) 次の計算をせよ。 x+11 x-10 (1) 2x2+7x+3 2x2-3x-2 CHART SOLUTION 分数式の加法, 減法 分母が異なるときは通分する ・・・・・・ x+11 x-10 2x2+7x+3 2x2-3x-2 x+11 x-10 (x+3)(2x+1) (x-2)(2x+1) 4 x2+4 4 x2+4 (x+11)(x-2) (x−10)(x+3) (x+3)(2x+1)(x-2) (x-2)(2x+1)(x+3) (x²+9x-22)-(x² −7x−30) (x+3)(x-2)(2x+1) 8(2x+1) 4 x2+4 (1) 2x2+7x+3=(x+3)(2x+1)] 通分すると分母は 2x2-3x-2=(x-2)(2x+1)| (x+3)(x-2)(2x+1) (x+3)(x-2)(2x+1)(x+3)(x-2) 4.(-8) (x2)2-42 (2) そのまま左から順に計算してもよいが,3つ以上の分数式の加減では, 数式を適当に組み合わせると、計算が簡単になる場合がある。 この問題で 1 x-2 x-2 4 x2-4 4 (与式)=(2x+2) とみて、()の部分を先に計算するとよ \x-2 + = x+2 x+2 4 (2) x²+4 8 = 32 x-16 4 x2+4 16x+8 (x+3)(x-2)(2x+1) 1 x-2 4{x2-4-(x2+4)} (x²+4)(x²-4) (x+2)-(x-2) (x-2)(x+2) ・+ Eto 1日 x+2 ((1) 駒 Ip.21 基本 ◆ まず分母を因数 ◆通分する。 = 分子を因数分解。 は展開しなくてよ 左から順に計算し 合、最初の2項に 4(x-2)-(x2+ (x²+4)(x-2 -x²+4x-12 (x+4)(x-2) となり、後の計算 になる。

回答募集中 回答数: 0
数学 高校生

問6の(1)の解き方が理解できません。 HINTに与式とありますがどのようにしてその式になるのかがわからないです。 教えてください、、

④6 次の式を計算せよ。 (1) (x-b)(x-c)(b-c)+(x-c)(x-a) (c-a)+(x-a)(x-b)(a-b) (2) (x+y+z)-(y+2z-x)-(2z+x-y)-(x+y-2z)共(2) 山梨学院大] >>ROS$#9 HINT A BELASK 括弧をはずして P, Q, R の式を整理してから代入する。 括弧をはずすときは、内側からは ずす。つまり(), {},〔〕の順にはずす。 2 (1) 求める式をPとすると P+ (3x2-2x+1)=x2-x もと糖分横因の火 (2) ある多項式(もとの式) を P, これに加えるべき式を Q, 誤って式Qを引いた結果の式 をRとすると P-Q=R ゆえに P=Q+R これをもとに, 正しい答えを考える。 4 (7) (1+a)(1-a+α²) (1-a²+α°)として,3次式の展開の公式を利用する。 5 (1)(ア)2つの()内の,どの項の積がxの項となるかを考える。 (2) 3つの()から,xの項yの項,2の項を1つずつ掛け合わせたものの和が xyz の項 となる。 6 そのまま展開してもよいがかなり大変。1文字について整理する,同じ式はおき換える な どすると, 見通しがよくなる。 (1) (5x)=(b-c)(x-b)(x-c)+(c-a)(x-c)(x-a)+(a−b)(x-a)(x-b) x 2の項の係数は, b-c+c-a+a-b=0となる。 (2) 似た式があるから, おき換えで計算をらくにする。 例えば, y+2z=Aとおくと, (x+y+2z)は(x+A) となる。 これに3次式の展開の公 式を使う。

回答募集中 回答数: 0