学年

教科

質問の種類

物理 高校生

わかりません💦教えてください🙇

必解 45. 〈円錐振り子〉 図1のように,質量mのおもりを,長さの軽くて伸びな ひもの一端につけ、もう一端を,鉛直方向を向いている天 頂角20のなめらかな円錐面の頂点に固定した。 重力加速度 の大きさをgとし、次のア~カに当てはまる解答 を0,g,m, lrを使って表せ。 ただしオカの解 答ではは使ってはいけない。 図1のように、円錐面上でおもりに角速度で円運動をさ せた。ωを大きくしていって, w2=アになると,円錐 面からおもりが受ける抗力は0になる。 このとき, ひもの張 力はイになっている。 それ以上の角速度では,おもり は円錐面から離れた状態で円運動を行う。 図 1 m 次に,ひもの代わりに, 自然の長さが1でばね定数が mg m 図2 のばねを使って、 図2のように円錐面上でおもりに円運動を させた。そのときのばねの長さを とすると,角速度 ω は 2=ウで与えられる。 また, 円錐面からおもりが受け る抗力はエになっている。 角速度 ω を大きくしていくとばねの伸びは大きくなってい きばねの長さがオになったときに円錐面からおもりが受ける抗力は0になること がわかる。また,そのときの角速度は2カで与えられる。 それ以上の角速度で は、おもりは円錐面から離れた状態で円運動を行うことになる。 〔上智大]

回答募集中 回答数: 0
数学 高校生

0<t<6になるのは何故ですか? 内接しているのは4つ角のみですよね?

めよ。 項 3 ■最 意。 日本 187 最大・最小の文章題(微分利用) 00000 半球に内接する直円柱の体積の最大値を求めよ。 また, そのときの直 円柱の高さを求めよ。 CHAT & SOLUTION 文章題の解法 Wom 最大・最小を求めたい量を式で表しやすいように変数を選ぶ 円柱の高さを、例えば 2t とすると計算がスムーズになる。 変数のとりうる値の範囲を求めておくことも忘れずに。 このとき、直円柱の底面の 半径は62-12 面積はπ(√62-122(36-12) したがって、直円柱の体積はtの3次関数となる。 基本186 3 2 開答 02t<12 直円柱の高さを 2 とすると 0<t<6 ある 含ま 最 るまと と 直円柱の底面の半径は √62-12 て ◆三平方の定理から。 ここで,直円柱の体積をyとすると y=(v36-12)2.2t =(36-t2)・2t=2π(36t-t3) を tで微分すると y'=2z(36-3t2)=-6(-12) =-6(t+2√3) (t-2√3) 0<t<6 において, y'=0 となるの (直円柱の体積) _=(底面積)×(高さ) dy y'で表す。 dt #P はt=2√3 のときである。 よって, 0<t<6 におけるy の増減表は右のようになる。 ゆえに,yt=2√3 で極 大かつ最大となり、その値は 2{362√√3-(2√3)}=2.2√3(36-12)=96√3 また、このとき,直円柱の高さは t 0 23 6 定義域は 0<t <6 であ るから,増減表の左端, v' + 0 y > 極大 2.2√3=4√3 したがって 最大値 96√3 π, 高さ 4√3 右端のyは空欄にして おく。 t=2√3 のとき √62-12=2√√6 よって、 直円柱の高さ。 底面の直径との比は 4√3:4√6=1: 2 百太限

解決済み 回答数: 1
数学 高校生

この問題の途中で余弦定理を使うためにcos60°を導いていると思うのですが、sinシータが三分の一なので、cosシータが三分のニ√ニとなり、これを使ってはいけないのですか?お願いします!

34 重要 例 174 曲面上の最短距離 右の図の直円錐で,Hは円の中心, 線分AB は直径, 1 OH は円に垂直で, OA=a, sin0= 3 点Pが母線 OB上にあり, PB=1 とするとき, 3 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 とする。 AB=2r とすると, △OAHで, AH=r, ∠OHA = 90° r_1 3 a であるから 解答 sin= 側面を直線OA で切り開いた展 開図は、図のような, 中心 0, 半径OA=αの扇形である。 中心角をxとすると、図の 弧ABA' の長さについて 2ла. -=2πr XC 360° 直円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。そこで、曲面 指針 なお、平面上の2点間を結ぶ最短の経路は, 2点を結ぶ線分である。 を広げる, つまり 展開図で考える。 → 側面の展開図は扇形となる。 であるから それぞB x=360°_=360° a a 3 ● PREGNA 3 r 1 a 3 ここで,求める最短経路の長さは、図の線分 AP の長さで あるから △OAP において, 余弦定理により =120° = AP²=0A²+OP²-20A OP cos 60° 0021 A' 2 2 = a ² + ( ²3² α)² - 2a + ²13² α = 1/2 = ²17 α² a -a² 9 A HET AP>0 であるから, 求める最短経路の長さは70 a 10000 0 H A' (A) A HAAL 弧ABA' の長さは、 顔面 の円 H の円周に等しい BL S 2点S, T を結ぶ最短の 経路は, 2点を結ぶ線分 ST (W) 3

解決済み 回答数: 1
数学 高校生

写真の質問に答えてください!

84 重要 例題 174 曲面上の最短距離 右の図の直円錐で,Hは円の中心,線分 AB は直径, OH は円に垂直で, OA=a, sin=1/3 とする。 点Pが母線 OB 上にあり, PB= 点Aからこの直円錐の側面を通って点Pに至る最短経 路の長さを求めよ。 a B=/1/3 とするとき, 解答 sin= =1/3であるから AB=2r とすると,△OAH で, AH=r, ∠OHA=90°, r_1 ---- 円錐の側面は曲面であるから, そのままでは最短経路は考えにくい。 そこで、曲面 側面の展開図は扇形となる。 を広げる,つまり 展開図で考える。 なお,平面上の2点間を結ぶ最短の経路は、2点を結ぶ線分である。 a 側面を直線OA で切り開いた展 開図は、図のような, 中心 0, 半径OA=αの扇形である。 中心角をxとすると、図の 弧 ABA' の長さについて 2ла• r_1 360° -= 2πr -であるから - a 3 B P 0 x=360° =360°/1-120° a ここで, 求める最短経路の長さは、図の線分 AP の長さで あるから、△OAP において、余弦定理に 理により より AP2= OA2+OP2-20A ・CPCO 6'0 a ² + ( 1²/3-a) ². -2a---a a. 9 AP >0であるから, 求める最短経路の長さは -a² A' 誰 √7 A 00000 0 iz. この式体 a 基本153 HE S 20115 【弧 ABA' の長さは,底面 の1の円周に等しい。 2点S, T を結ぶ最短の 経路は, 2点を結ぶ線分 ST 11 ol 2

未解決 回答数: 0