学年

教科

質問の種類

物理 高校生

(3)はなぜ結果的にW/L=Tbなんですか?

41等加速度運動 A....... 必解 1. 〈速度の合成〉 図のように,一定の速さで一様に流れる川に浮かぶ船の運動 を考える。船は, 静止している水においては一定の速さ C D 標準問題 Us (vs>v) で進み, また, 瞬時に向きを自由に変えられる。 最初, W 船は船着場Aにいる。 Aから流れに平行に下流に向かって距離 L離れた地点を B, A から流れに垂直に距離 W離れた地点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは 無視できるものとする。 (1)地点AとBを直線的に往復する時間 TB を L, Us, v を用いて表せ。 Vε 船 A B (2) 船首の向きを, ACを結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流 れに垂直に船が進むようにして, 地点AとCを直線的に往復する時間 Tc を W, us, vを用 いて表せ。 (3) L=W のとき, Tc を TB, us, v を用いて表せ。 また, 時間 Tc と TB のうち長いほうを答 えよ。 (4) 船首の向きを, AC を結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点Aから船 を進めると,地点Dに直線的に到着する。 その後, 地点DからCに, 流れに平行に進み, 地点Cに到着する。 地点AからDを経由しCまで移動するのに要する時間を W, us, v, 0 を用いて表せ。 〔21 東京都立大〕 解 2. <等加速度直線運動と相対速度〉 (1)高速道路を自動車Aが時速108kmで走行している。この速さは秒速何m に相当するか 答えよ。

未解決 回答数: 1
物理 高校生

(2)はなぜTc/Tbになるのですか? どなたか教えてください🙇‍♀️

41等加速度運動 A....... 必解 1. 〈速度の合成〉 図のように,一定の速さで一様に流れる川に浮かぶ船の運動 を考える。船は, 静止している水においては一定の速さ C D 標準問題 Us (vs>v) で進み, また, 瞬時に向きを自由に変えられる。 最初, W 船は船着場Aにいる。 Aから流れに平行に下流に向かって距離 L離れた地点を B, A から流れに垂直に距離 W離れた地点をC, Cから流れに平行に下流に離れた地点をDとする。 船の大きさは 無視できるものとする。 (1)地点AとBを直線的に往復する時間 TB を L, Us, v を用いて表せ。 Vε 船 A B (2) 船首の向きを, ACを結ぶ直線に対してある一定の角度をなすように上流向きに向け, 流 れに垂直に船が進むようにして, 地点AとCを直線的に往復する時間 Tc を W, us, vを用 いて表せ。 (3) L=W のとき, Tc を TB, us, v を用いて表せ。 また, 時間 Tc と TB のうち長いほうを答 えよ。 (4) 船首の向きを, AC を結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点Aから船 を進めると,地点Dに直線的に到着する。 その後, 地点DからCに, 流れに平行に進み, 地点Cに到着する。 地点AからDを経由しCまで移動するのに要する時間を W, us, v, 0 を用いて表せ。 〔21 東京都立大〕 解 2. <等加速度直線運動と相対速度〉 (1)高速道路を自動車Aが時速108kmで走行している。この速さは秒速何m に相当するか 答えよ。

未解決 回答数: 1
数学 高校生

195. 変化率を求めるのになぜ微分が必要なのですか??

306 ACX 00000 基本例題 195 変化率 (1) 地上から真上に初速度49m/s で投げ上げられた物体のt秒後の高さんは h=49t-4.9t²(m) で与えられる。この運動について次のものを求めよ。た し,vm/sは秒速vmを意味する。 (ア) 1秒後から2秒後までの平均の速さ (1) 2秒後の瞬間の速さ (2) 半径 10 cm の球がある。毎秒1cm の割合で球の半径が大きくなっていくと き球の体積の5秒後における変化率を求めよ。 p.296 基本事項) 指針 (1) 高さんは時刻tの関数と考えることができる。 h=f(t)=49t-4.9t2 とする。 (ア)平均の速さとは,平均変化率と同じこと。(んの変化量) ÷ (tの変化量)を計算。 (イ) 2秒後の瞬間の速さを求めるには 2秒後から2+b秒後までの平均の速さ (平均 変化率)を求め, 60 のときの極限値を求めればよい。 つまり、微分係数 f'(2)が 代入する。 t=2 における瞬間の速さである。 (2) まず,体積Vを時刻 tの関数で表す。これを V=f(t) とすると、5秒後の変化率は t=5 における微分係数 f'(5) である。 ( COX SU 解答 (1)(ア) (49・2-4.9.22)ー(49・1-4.9・12) zp(x2-1 =34.3(m/s) 2)+(x)\ (イ) t秒後の瞬間の速さはんの時刻t に対する変化率であ dh =49-9.8t dt る。 hをtで微分すると 700- 求める瞬間の速さは, t=2として ~+734 49-9.8.2=29.4(m/s) (2) t秒後の球の半径は (10+t) cm である。 t秒後の球の体積をV cm とすると dV dt Vをtで微分して 求める変化率は, t=5として 練習 4 V= ½π(10+t)³ 13.3(10+t)^1=4z(10+t)^{(ax+b)"'" 4 (10+5)^2=900(cm²/s) 3 tがaから6まで変化する ときの関数 f(t) の平均変 化率は f(b)-f(a) b-a ば,関数h=f(t) の導関数 f'(t), とを,変数を明示してをtで微分するということがある。 dh dt 参照。h'=49-9.8t と書い してもよいが, dh と書くと dt 関数h をtで微分してい ることが式から伝わる。 < については、下の注意 注意 変数がx, y以外の文字で表されている場合にも,導関数は今までと同様に取り扱う。 charf(t)などで表す。また,この導関数を求める。 例え V20x =n(ax+b)²-¹(ax+b) (1) 地上から真上に初速度 29.4m/sで投げ上げられた物体のt 100t-4912(m) で与えられる。 この運動につ t秒後の高さんは

未解決 回答数: 1