学年

教科

質問の種類

数学 高校生

解答の?下線部を教えてください。 同じものを含む場合の順列の総数を求めていることは分かるのですが、どういう考え方なのか分かりません。

基本 例題 30 同じ数字を含む順列 00000 1,2,3の数字が書かれたカードがそれぞれ2枚 3枚 4枚ある。 これらのカー ドから4枚を使ってできる4桁の整数の個数を求めよ。 基本28 指針 同じ数字のカードが何枚かあり (しかし, その枚数には制限がある), そこから整数を作る 問題では,まず作ることができる整数のタイプを考える。 本問では,使うことができる数字の制限から、次の4つのタイプに分けることができる。 よって 求め AAAA, AAAB, AABB, AABC ・A, B, C は 1, 2, 3のいずれかを表す。 解答 このタイプ別に整数の個数を考える。 1,2,3のいずれかをA, B, C で表す。 ただし, A, B, Cは すべて異なる数字とする。」と通三部経 次の [1]~[4] のいずれかの場合が考えられる。 『[1] AAAA のタイプ。つまり,同じ数字を4つ含むとき。 4枚ある数字は3だけであるから(1個)-(金) [2] AAAB のタイプ。 つまり、同じ数字を3つ含むとき。 3枚以上ある数字は2, 3であるから,Aの選び方は2通り Aにどれを選んでも,Bの選び方は2通り 4! そのおのおのについて, 並べ方は -=4(通り) 3! よって、このタイプの整数は 2×2×4=16 (個) [3] AABB のタイプ。 3333 だけ。 222□ □は1,3) または 333 は 12 1122,1133, 2233 つまり、同じ数字2つを2組含むとき。 1, 2, 3 すべて 2枚以上あるから,A,Bの選び方は2通り そのおのおのについて, 並べ方は -=6(通り) 2!2! QUE SOL よって、このタイプの整数は |32×6=18 (個) [4] AABCのタイプ。 つまり、同じ数字2つを1組含むとき。 Aの選び方は3通りで, B, CはAを選べば決まる。 1 2 3 から使わない数を 1つ選ぶと考えて 3C1 通 りとしてもよい。 3C2=3C1=3 TE 1123,2213,3312 の3通りがある。 なお,例 えば1132は1123と同じタ 4! そのおのおのについて, 並べ方は (1) 2! =12(通り) イプであることに注意。 よって、このタイプの整数は3×12=36 (個) 以上から 1+16+18+36=71 (個) このうち 何通りあるか 両方を 1章 5 組 合 セ

解決済み 回答数: 1
数学 高校生

解答の95+12x>100+12(20-x) になるのがわかりません。95と100は重さで12xと12(20-x)は、球の数のはずなのに足すのはなぜですか?

59 1 ◎基本2 なるだろうか? (2) も同様。 AxB の形に A>0, A=0, で場合分け。 基本 例題 32 1次不等式と文章題 下 Aの箱の重さは95g,Bの箱の重さは100gである。 1個12gの球が20個あ り,これらをAとBに分けて入れたところ,Aの箱の方が重かった。そこで 基本30 Aの箱からBの箱に球を1個移したところ、今度はBの箱の方が重くなった。 最初,Aの箱には何個の球を入れたか。 CHART & SOLUTION 文章題の解法 ① 変数を適当に定め、関係式を作って解く ②解が問題の条件に適するかどうかを吟味 最初,Aの箱の球をx個としたときのAとBの重さを比較した関係式を作る。 次に,Aの箱の球を1個減らし、Bの箱の球を1個増やしたときの重さを比較した関係式を 作る。こうしてできる2つの不等式を連立させて解けばよい。 なお, xは自然数であることに注意する。 解答 となるためには,最大 とき 0 を代入して すべての実数x の範囲を定 Bは (20-x) 個 最初,Aの箱にx個の球を入れたとすると して0.x=0である A,Bの重さを比較して 95+12x > 100+12(20-x ) 05Aの方が重い。 245 整理して 24x>245 よって x> 24 正の数なので、 の向きはそのまま Aの箱から1個減らし, Bの箱に1個増やしたとき A,Bの重さを比較して 95+12(x-1) <100+12(21-x) ← Aは (x-1) 個, Bは(20-x+1) 個 ←Bの方が重い。 1章 1次不等式 整理して 24x<269 よって は負の数なので、 x<- 24② である 269 の向きは逆にな 245 ①と②の共通範囲を求めて 269 ·<x<· 24 24 245 24 ≒10.2, 269 24 ≒11.2 xは自然数であるから x=11 ◆解の吟味。 したがって,最初Aの箱に入れた球は11個である。 2 Ic

解決済み 回答数: 1