学年

教科

質問の種類

数学 高校生

150ではSnをSn+1と計算 144ではSnをSn-1と計算 させてるのはなぜですか?いつどっちにするとかあるんですか?

B 数列 150 S と an の関係式 (A) 数列{a}の初項から第n項までの和をSとするとき, Sn=2an-n (n=1, 2, 3, ...) が成り立っている. (1) α1 を求めよ . 解答 Sn=2an-n (1) ①でn=1 とすると, (2)一般項 an を求めよ.X (立教大) 29-5 2(0-1)-6-1) 20-2-1-1 Si=201-1 であり, S=a であるから, zan-n-1 a₁=2a1-1 (2)条件式より、 .. a₁=1 Sn+1=2an+1-(n+1), Sn=2an-n であり、両式の差を考えると, Sn+1-Sn=2an+1-2an-1 ①のnを一斉に n + 1 に変える Sn-Sn1 = α (n≧2) であるから, Sn+1-Sn=an+1 である an+1=2an+1-2a-1 an+1=2an+1 ②を変形すると, an+1+1=2(a+1) これは基本形の漸化式である 36₁ = 42 b1=az これより, 数列{an+1}は公比2の等比数列であり,初項は, a₁+1=1+1=2 である. よって an+1=2・2"-1=2" an=2"-1 an-11=2am-1 2=2x-11 anti-=2(0,-ス) 解說講義 Anπ = 2 (ant!) Goll ba bace 22 bm an と Sn が混ざっていては考えにくい.このような場合には, 144 で勉強した 「和と一般項 の関係」を用いて Sn を消去して,{a} についての関係式 (漸化式) を手に入れることを考え よう. 解答のように,①のn をn+1にした式を準備してその差を考えれば, Sn+1-Sn=an+1 によって,すぐに{a}についての関係式を手に入れることができる. 文 系 数学の必勝ポイント an と Sn の混ざった条件式 和と一般項の関係によってS" を追い出して, {az}についての関係式 を手に入れる (nを1つずらした式を用意して差を考えるとよい)

未解決 回答数: 1
数学 高校生

29.3 このような証明方法でも問題ないですよね??

基本例題 29 絶対値と不等式の不 82 00000 次の不等式を証明せよ。 明などの基本の (1)|a+b|≦|a|+|6|| (2) |a|-|6|≧|a+b) (3) la+b+cl≦lal+10+| 指針▷(1) 例題 28 と同様に,(差の式) ≧0は示しにくい。 重要 de+pas\\&+D\² $328 30 解答 |A=A2 を利用すると, 絶対値の処理が容易になる。 そこで A≧0, B≧0の A≧B⇔A'≧B'A'-B'≧0の の方針で進める。また、絶対値の性質(次ページの①~⑦) を利用して証明してもよい。』 (23)と似た形である。 そこで, (1) の結果を利用することを考えるとよい。 *****RO CHART 似た問題 11 結果を利用 ② 方法をまねる (1)(|a|+|6|)²-la+b=a²+2|a||6|+b²-(a²+2a6+62) ◄|A|²=A² <|ab|=|a||6| 2 =2(|ab|-ab)≧0 よって la+b≧(|a|+|6|) 2 |a+b≧0,|a|+|6|≧0から la+6|≦|a|+|6| 別解] 一般に,一|a|≦a≦|a|,-|6|≦6≦|6| が成り立つ。 H この不等式の辺々を加えて (a+16)≦a+b≦|a|+|6| したがって |a+6|≦|a|+|6| de (2)(1) の不等式での代わりにa+b, bの代わりに―6と おくと |(a+b)+(−b)| ≤|a+b|+|-b| de+pas ゆえに |a|-|6|≦la+6| よって |a|≧|a+6|+|6| 別解 [1] |a|-|b|<0 のとき よって a+b≧0であるから,|a|-|6|<|a+6|は成り立つ。 [2] |a|-|6|≧0のとき |a+b1²-(|a|-|6|)²=a²+2ab+b²-(²-2|a||6|+62) =2(ab+lab)≧0 よって (|a|-|6|)2≦|a+b2 |a|-|6|≧0,|a+b≧0であるから [1], [2] から lal-1b|≤|a+bl (3) (1) の不等式での代わりにb+c とおくと la+(b+c)|≦la|+|b+cl a+b+cl≦|a|+|6|+|c| 05 608- -B≦A≦B +S) ≤ ( ⇔[A]≦B ズームUP参照 DOCU (ay lal+1b/+/c/ a66650s |a|-|6|≦la+6| この確認を忘れずに。 |A|≧A, AI≧-A から -|A|≦a≦|A| P |a|-|6|<0≦|a+6 [2] の場合は, (2) の左辺, 右辺は0以上であるから, (右辺) (左辺)20を示 す方針が使える。 +04 105 (0+ 14-08- 133c¹2 (1) の結果を利用。 (1) の結果をもう1回利用。 (|b+cl≦|6|+|c|) 1+RB+++

回答募集中 回答数: 0