学年

教科

質問の種類

数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

(3)のシグマの式がなぜこうなるのかわかりません。お願いします

13 奇偶で形が異なる漸化式 次のように定められた数列がある. n n+1 α」=1, an+1=an+ 2 (1) 2= |, a3=1 a6=□, a= | (n=1, 3, 5, ...), an+1=an+ である. 2 (n=2, 4, 6, ...) (2) 439= I, so= である. (3) 初項から第40項までの和は である. 奇偶で形が異なる漸化式 (明大・農) の奇隅で形が異なる漸化式は,n=2k-1, n=2kとおいて, 奇数項 (a, ……どうしに成り立つ漸化式。つまり、ak+」をza-」で表す式を立てて解き、もとの漸化式に戻 てを求める. 解答量 1+1 2 (1)q=1より, a2=a+ =2, a=az+ =3, 2 6 5+1 a=a3+ 3+1 L=5.05=a+1/2=7. 2 =7, a6=as+ 2 =10, α7=46+ 2 =13 (2)n=2k-1のとき, (2k-1)+1 α(2k-1)+1=2k-1 + .. azk=azk-1+k 2 2k 2 ( n=2kのとき,a2k+1=a2k+ -=azk+k ①,②より, a2k+1=Q2k+k= (a2k-1+k)+k=a2k-1+2k n≧2のとき, azn-1=a1+(ag-a)+(α5-a3)++ ( an-1-a2n-3) =a+(a2k+1-a2k-1)=1+2k=1+2.- 2.1/2(n-1)n n-1 k=1 n-1 k=1 =n2-n+1(n=1のときもこれでよい) ① から, a2n=azn-1+n=n2+1 ③ ④でn=20として, α39=202-20+1=381, ao=202+1=401 (3) ③ ④ より 20 n=1 20 (azn-1+ a2n)=(2n²-n+2) n=1 =2・1・20-21-41-12 ・20・21+2・20=5570 13 演習題 ( 解答は p.77 ) ④ 奇数項についての漸化式を立て て奇数項を求める。 偶数項は奇 数項からすぐに分かるので, 偶数 項についての漸化式は立てる必 要はない. a=na k=1 次の漸化式によって定義される数列{az} (n=1, 2, ...) について, 次の問いに答えよ. 1 a1=4,a2n=/02n-1+n2, a2n+1=442m+4(n+1) (1) a2, 3, 4, 45 を求めよ. (2), 2n+1をnを用いて表せ. (3){4}の項で4の倍数でないものは,nの値が小さいものから4項並べると, 4, ao, a, a である。 (2) 奇数番目の項だけ に着目する. (3) 2+1 は漸化式か 68 (類 松山大薬) (1) (2) (i (in (i ■解 (1) 左 (2 I

回答募集中 回答数: 0
数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0
英語 高校生

対数関数の問題です。 194例題についてですが、最後実数解の個数が3個4個になっている理由がわかりません。y=aとy=-t2+2tの共有点の個数=実数解の個数だと思っていたのですが、

000 演習 例題 194 対数方程式の解の個数 の解をも 本女子大] 基本173 なるとの る。 よい。 00000 aは定数とする。 xの方程式{log2(x2+√2)}-210g2(x2+√2) +α=0 の実数 解の個数を求めよ。 指針 前ページの演習例題 193 同様, おき換えにより, 2次方程式の問題に直す。 変数のおき換え 範囲に注意 log2(x+√2)=t とおくと, 方程式は t2-2t+α=0 ...... (*) 基本183 22 から, tの値の範囲を求め, その範囲におけるtの方程式 (*)の解の個 数を調べる。 それには, p.239 重要例題 149 と同様, グラフを利用する。 なお、10g2(x2+√2)=t における x と tの対応に注意する。 log2(x2+√2)=t t2-2t+α=0 ① とおくと, 方程式は より,x2+√√2 であるから log2(x2+√2) log2√2 y=f(t) したがって ② また、①を満たすx の個数は,次のようになる。 = 1/12 のとき x=0の1個, 311 20 t -2)²+5a-10 11/23のときx>0であるから -2t+α=0から 2個 -t2+2t=a x2+√22より x=2√2 であるから 1/1/2のとき x=0 t= 11/21のときx>0 よってx=±√2-√2 y↑ よって、②の範囲における, 1 放物線y=-t+ 2t と直線y=a 3-- y=a <直線y=α を上下に動か 4 の共有点の座標に注意して, a して共有点の個数を調 べる。 方程式の実数解の個数を調べると, 01 1 32 t 2 2 a>1のとき0個; 5a+6 3 a=1, a<- のとき2個; 共有点なし。 11/23 である共有点1個 3 る。 4 a=2のとき3個; 3 <a<1のとき4個 2 11/23 である共有点2個。 つの実数解をも a. 6は定数とする。 xの方程式 (10g2(x2) -alog2(x+1)+a+b= 0 が異なる 2つの実数解をもつような点 (a, b) 全体のを,座標平面上に図示せよ。 p.312 EX 125 5章 33 関連発展問題 城 に

回答募集中 回答数: 0
数学 高校生

解答の3行目と4行目がなんでこうなるのか教えて欲しいです!!

104 第4章 三角関数 基礎問 精講 63 三角方程式 < Osa SBSπとするとき cos(-a)=s COS をαで表せ. この問題は数学Ⅰの範囲でも解けますが、弧度法の利用になれる。 とも含めて、数学IIの問題として勉強します。 この方程式は三角方程式の中では一番難しいタイプで,種類 (sin, cos) も角度 ( α, β) も異なります. このタイプは,まず種類を統一 a =sinα を用いて, sinα = cos 2β ...... ① をみたす ならば一になります。この問題では 20 たとえば,右図の位置に動径があるとき,角度の 呼び方は, 与えられた範囲によって変わります。 もし、00<2ならばだし、一ヶ≦0<x 105 YA 11 0 01/11となっているので2=αと 2π (別解) cos2β=cos( 和積の公式より, ることです。そのための道具が cos Cos (フレーム) =sina で,これでCos にて きます。そのあとは2つの考え方があります。 =0 . sin (3+42) 0 または,sin (B-1+1/2) = 0 0<-≤1, os(a)より、cos2β-cos ( -2sin(+4) sin(B-4+ -(-a)になります。一αを音と考えてみたらわかるはずです。 cos (-a)=0 57 参照 = 0 解答 COS cos(-a) =sina より,①は, sind=cos(-a) sind= cos2β YA ここで,/ cos 28-cos(-a) m DEBET 2 0≤28≤2π, 0<-α≤ 右の単位円より, a π 3π -α, +α mi 2 = -1 0 B より 5π 0<ẞ+---+<* 4 2 4' 42 B+4号πB-+号-0 =π, 2 よって、B-2+1.41 β= π a 2'42 注 どちらの解答がよいかという勉強ではなく,どちらともできるよ うにしておきましょう. 特に, 数学Ⅲが必要な人は,和積の公式を頻 繁に使うことになるので,その意味でも (別解)は必要です。 ポイント 種類も角度も異なる三角方程式は 注参照 まず, 種類を統一する a + 3π 4 2'4 2 +α - 17 -α) と表現してはいけません。それはOS2Bだ 演習問題 63 からです。--+=+α 現です. 3 +αがこの範囲においては正しい表 櫻 (0) 第4章 as, OSBSとするとき, sincos2β をみたすβを αで表せ.

回答募集中 回答数: 0
生物 高校生

課題で出たのですが、予習の範囲で分かりません。教えて欲しいです🙏🏻

「基礎生物」 ・演習問題 転写 DNA 問1 次の文章の(1)~(6)に最も適切な語・数を答えよ。 20 ( タンパク質を構成するアミノ酸は (1) 種類あり、DNAの(2)つの連続した塩基の並びが一 つのアミノ酸を指定している。 DNAの塩基配列の中にはアミノ酸を指定する部分である(3)と、ア ミノ酸を指定しない ( 4 ) と呼ばれる部分がある。( 5酵素名 )によって DNAの塩基配列は写し 取られて RNA ができるが、その後(6)という過程で ( 4 )の部分が除かれて mRNA は完成す A 問2 アラニ 1) HOT.JA(N) 真核生物の遺伝子 (DNA)とそのmRNA を適切な試薬および温度で処理すると、 2本鎖DNAは1 本鎖に分離し、mRNA と相補的に結合する。 下図は、この結合の様子を模式的に表したものである。 ※この図は試験管内で実験的に作成された状態を示し、細胞内の状態を表したものではありません。 細胞内での DNA と mRNAの関係をよく理解したうえで考えてください。 (d) (c) - (a) (b) - (1) 図中の (a) (b) のどちらがDNA か。 an 0 (2) (2)図中の (a) (b) の間には、どのような塩基対が形成されているか、その組み合わせを全て答えよ。(正 式名称および記号) DNA:RNA ALV TとA ICとG GECOR O (3)図中の (a) 上の領域 (c) (d)の名称を答えよ。 (c) TTA da And (4) 次の文①~⑥で正しいものには○をつけよ。 ① 図(a)(c)の領域は、この後切り取られる。 Ana (2) 図の (a) の (d) の領域は、この後切り取られる。 RAMCI (3 図の (b)は相補的な RNA が合成された直後を表している。 (4) 図の(a)の(c)の領域がリボソームに運ばれ読み取られる。 GAEMON (5) 図の(a)の(d)の領域がリボソームに運ばれ読み取られる。 6 図の(b)がリボソームに運ばれ読み取られる。

回答募集中 回答数: 0