学年

教科

質問の種類

化学 高校生

問2がわからないです。炭酸バリウムが全く分解されないのでしょうか?2.4kPaになるまで電離が起きるのかと思いました。 教えて頂きたいです。よろしくお願いいたします。

T1-3 不均一 次の文を読み, 以下の問1~3に答えよ。 ただし, 気体定数R = 8.3kPa・L/(K・mol) とし 答の数値はすべて有効数字2桁で記せ。 炭酸カルシウム(CaCO3) は石灰石や大理石の主成分として天然に存在する。 炭酸カルシウムを高温に加熱すると二酸化炭素と酸化カルシウム(CaO) に分解するが,真空 密閉容器中で 890℃以上の高温では, 二酸化炭素の圧力がある値に達すると次式のような平 衡状態となる。このときの温度と二酸化炭素の圧力の関係は表1のようになる。 CaCO3 (固) CaO (固) + CO2(気) 表1 炭酸カルシウムの平衡状態における温度と二酸化炭素の圧力の関係 1100 温度[℃] 900 圧力 〔kPa〕 1.0×102 1.2×10° BaCO (固) また,カルシウムと同じ2族に属するバリウムの炭酸塩 (BaCO3) においても真空密閉容器中 で1100℃ では次式の平衡状態となり,このとき、二酸化炭素の圧力は 2.4kPa である。 べて気体と BaO (固) + CO2(気) 気体は理想気体としてふるまうものと仮定する。 また, 容器内の固体の体積は無視できるも のとし、 使用する容器は耐圧・耐熱であり, 容器の体積の変化はないものとする。 問1 パーセントで 炭酸カルシウム 0.20mol を 10Lの容器に入れて25℃で真空密閉状態とした後, 容器 を900℃に保った。 このとき, 容器内の圧力は何kPa になるか。 か。 問2 炭酸カルシウム 0.20mol と炭酸バリウム 0.20molを10Lの容器に入れて25℃で真 空密閉状態とした後, 容器を1100℃に保った。 このとき, 容器内の圧力は何kPa になる 問3 炭酸カルシウ ゴム

未解決 回答数: 1
化学 高校生

緩衝液のphの求め方教えて下さい。お願いします🙇‍♂️

◆問題 343 発 緩衝液 0.10Lの酢酸水溶液10.0mLに0.10mol/Lの水酸化ナトリウム水溶液 5.0mL を 加えて、緩衝液をつくった。 この溶液のpHを小数第2位まで求めよ。 ただし,酢酸の 電離定数を Ka=2.7×10-5mol/L,log102.7=0.43 とする。 LOW 第章 物質の変化と平衡 考え方 反 解答 ( 緩衝液中でも,酢酸の電離平衡 が成り立つ。混合水溶液中の酢 酸分子と酢酸イオンの濃度を求 め, 電離平衡の量的関係を調べ ればよい。このとき,酢酸イオ ンのモル濃度は,中和で生じた ものと酢酸の電離で生じたもの との合計になる。これらの濃度 を次式へ代入して水素イオン濃 度を求め, pH を算出する。 残った CH3COOH のモル濃度は, 0.10× 10.0 1000 -mol-0.10× 5.0 1000 mol 0.10 x mol (15.0/1000) L また,生じた CH3COONa のモル濃度は, 5.0m 1000 = 0.0333mol/L (S) (g) m0.0 -=0.0333mol/L (15.0/1000) L 混合溶液中の [H+] を x[mol/L] とすると, 平衡状態CH3COOH 1 H+ + CH3COO- はじめ 0.0333 [H+][CH3COO-] 平衡時 0.0333-x 0 x 0.0333+x 0.0333 [mol/L] [mol/L] Ka= ① 340 [CH3COOH] [CH3COOH] [H+]= ② [CH3COO-] xの値は小さいので, 0.0333-x= 0.0333,0.0333+x= 0.0333 とみなすと, ②式から [H+] = Ka となるため, pH=-logio [H+]=-logio (2.7×10-5)=4.57 X 発展例題28 溶解度積 問題 346 347

回答募集中 回答数: 0
化学 高校生

反応エンタルピー=生成物のエンタルピーの和-反応物のエンタルピーの和と習ったのですが 何故①-②×2となるのかが理解できません... 2coのエンタルピー-(黒鉛+co2)のエンタルピーとなるはずですよね? どなたか教えてくれると助かります....

2CO AH=? KJO 基本例題27 ヘスの法則とエネルギー図 炭素 (黒鉛) および一酸化炭素の燃焼エンタルピーは, -394kJ/mol, -283kJ/molであ る。 次の熱化学方程式の反応エンタルピー AH を求めよ。 C (黒鉛) + CO2→2CO AH = ?kJ (1) 問題271-272-23 4109 (2) (3) (4 考え方 解答大する向 物質の合 (5 ①各反応を式で表し, 求 める式中に存在する物 質が残るように組み合 わせる。 各反応エンタルピーは次式のように表される。 C (黒鉛) +O2→CO2 △H=-394kJ 26 ① 1 CO+- +/2/202 →CO2 ②エネルギー図を利用し て,反応エンタルピー を求める。 エネルギー 図では,反応物,生成 物のエンタルピーの大 小を示し, 反応の方向 を示す矢印に△H の 値を添える。 C (黒鉛) + Co ← エンタルピー → 2CO となるように, ①-② ×2 を行うと 2CO AH= + 172kJ C (黒鉛) + CO2 別解 反応にか かわる物質をすべて書 エ くことに注意して,エ ネルギー図を描く。 図 から,次のように求め られる。 ( AH=283kJ ×2-394kJ =+172kJ (キ) 2CO+O2 () AH = ? kJC (黒鉛) + CO2+02 =(-283kJ)×2 AH2=-283kJ.② ②×20%H △H2×2 ①OH (1) AH₁ =-394kJ 2CO2 () ()

未解決 回答数: 0
数学 高校生

左のページは絶対値取らないでも計算できますが,右ページは場合分けする必要があるっていうのの理由を知りたいです。どういう場合に場合分けをしなければいけないかは把握してます

73 00000 (2) x-2<0 -1<0-1≥0 X-2≥0 72 基本 40 絶対値を含む方程式 次の方程式・不等式を解け。 (1)|x-1|=2 (2)|2-3x|=4 (3)|x-2|<3 指針 ただし,(1)~(4)の右辺はすべて正の定数であるから, 絶対値記号を含むときは、場合分けをして、絶対値 記号をはずして考えるのが基本である。 |A|= 次のことを利用して解くとよい。 >0 のとき 方程式|x|=cの解はx=±c -c<x<c 不等式|x|<c の解は 不等式|x|>c の解は x<-c, c<x (1)|x-1|=2から x-1=±2 x1=2 または x1=-2 x=3,-1 (4)基本 A 11=1_^ -A 例題 41 絶対値を含む方程式 P.63 次の方程式を解け。 (1) x-2|=3x (2)|x-1|+|x-2|=x AKO 絶対値記号を場合分けしてはずすことを考える。 それには, |x-1=Xとおくと |XI=2 よって X=±2 | (2) |2-3x|=|3x-2 であるから, 方程式は 3x-2|=412-3x=4から 2-3x=±4 としてもよいが、 |= {_^ |A|= -A (A≧0 のとき) (A < 0 のとき) であることを用いる。 このとき, 場合の分かれ目となるの は, A=0, すなわち | 内の式 =0の値である。 (1)x2≧0x20, すなわち, x≧2とx<2の場合に分ける。 (2) 2つの絶対値記号内の式x-1, x-2が0となるxの 値は,それぞれ1 2 であるから,x<1, 1≦x<2, 2≦x の3つの場合に分けて解く (p.75 ズーム UP も参照)。 (1)[1] 章 19 2 x 場合の分かれ目 41次不等式 解答 すなわち よって ゆえに 3x2=±4 答 すなわち 3x2=4 または 3x2=-4 |-4|=|A|を利用 のとき, 方程式は x-2=3x これを解いて x=-1 x=-1 は x2を満たさ ない。 よって (3)|x-2|<3から x=2, -2 の係数を正の数に [2] x<2のとき, 方程式は -(x-2)=3x 1 3 -3<x-2<3 (3),(4)x2=Xと おくと解きやすくな これを解いて x= 2 x= は x<2を満たす。 2 重要! 場合分けにより,||を はずしてできる方程式の 解が、場合分けの条件を 満たすか満たさないかを 必ずチェックすること (解答の の部分)。 1 各辺に2を加えて -1<x<5 |X|<3から [1], [2] から, 求める解は x= (4)|x-2|>3から x-2<-3, 3<x-2 -3<X<3 したがって x<-1, 5<x |X|>3から 最後に解をまとめておく。 -2x+3=x X<-3, 3<X これを解いて x=1 x=1はx<1を満たさない。 [2] 1≦x<2のとき, 方程式は (x-1)(x-2)=x これを解いて x=1 - をつけてをはず す。 x-1≧0, x-2 < 0 x=1は1≦x<2を満たす。 (x-1)+(x-2)=x <x-1>0, x-2≧0 2 (2)[1] x<1のとき,方程式は (x-1)(x-2)=xx-1<0,x-2<0→ すなわち 絶対値を数直線上の距離ととらえる |b-alは,数直線上の2点A(a),B(b)間の距離を表しているから, x-2は数直線」 座標が2である点と点P(x) の距離ととらえることができる。 よって、(3),(4)の不等 満たすxの値の範囲は、下の図のように表すことができる。 |x-21=3 x-21>3 \x-21=3 [3] 2≦xのとき, 方程式は 2x-3=x すなわち これを解いて x=3 以上から、 求める解は y=x-21のグラスと方程式 x=3は2≦xを満たす。 x=1, 3 最後に解をまとめておく。

未解決 回答数: 1
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
1/207