学年

教科

質問の種類

物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
物理 高校生

(2)のΔl-xになぜなるのかがわかりません

振野り 発展例題 A m 図のように,ばね定数kの軽いばねの下端を固定し, 上端に質量Mの 水平な台Bを取りつけ,その上に質量Mの物体Aをのせた装置がある。 物体Aと台Bを,つりあいの位置を中心に鉛直方向に単振動をさせる。 このとき,物体Aが台Bからはなれることがないとすると, AとBは同 じ単振動をする。重力加速度の大きさをgとして, 次の各間に答えよ。 (1) 装置全体がつっりあいの状態にあるとき,自然長からのばねの縮み 41はいくらか。 (2) 台Bとともに単振動をしている, 物体Aの加速度aはいくらか。鉛直上向きを正, Aのつりあいの位置からの変位をxとして,加速度aをxの関数として表せ。 (3) 台Bが物体Aを押す力げを, Aのつりあいの位置からの変位xの関数として表せ。 (4)台Bが最高点に達したとき, 台Bが物体Aを押すカ子がちょうど0になったとする。 このときの単振動の振幅 ro を, M, m, k, gを用いて表せ。 (5)台Bをつりあいの位置から/2 ro だけ押し下げ, 静かにはなすと, 物体Aは, つり あいの位置からの変位がx, のところで台Bからはなれた。変位x1,およびそのとき の物体Aの速さを, M, m, k, gを用いてそれぞれ表せ。 B M k (京都産業大 改) (3) Aが受ける力は, 図の ように示される。 Aの運動 Af A (1) 装置全体について, 力のつり 指針 あいの式を立てる。 (2) A, Bが一体となって運動しているので, A とBを一体とみなして運動方程式を立てる。 (3)(4) Aにはたらく力を考え, Aについての運 動方程式から,カfを求める。(4)では, (3)の 結果を利用する。 (5) AがBからはなれるのは, f==0のときであ る。また,単振動におけるエネルギー保存の法 則では,運動エネルギーと復元力による位置エ ネルギーの和は一定である。復元力による位置 エネルギーは,つりあいの位置からの変位xを 用いて, kx?/2 と表される。 解説 方程式を立てると, B mg ma=f-mg f=m(g+a) S k m(g-M+m*) (4) このとき,Aは振動の端に達しており, (3) の式でx=roのとき, f=0になったと考えら れる。 0=m(g-M+m) k M+m ro= k (5) AがBからはなれるのは, f=0になるとき である。(4)の結果から, 変位x, は, (1) 装置全体 の力のつりあいから, kAl-(M+m)g=0 ARAI A M+m k X」=ro= B mg Mg はなれたときのA, Bの速さをvとする。 Bを V2 ro だけ押し下げてはなした直後と, AとB がはなれるときとでは, AとBの単振動のエネ ルギーの和は保存される。単振動におけるエネ ルギー保存の法則を用いると, A= M+m k (2) AとBを一体とみなす と,変位xのときに受ける 力は,図のように示される。 一体とした運動方程式を立 k(A1-x) A B mg Mgと ら(Z r=kx+(M+m)が てると, (M+m)a=k(4lーx)- (M+m)g X,と roに値を代入して, ひを求めると、 kAl-(M+m)g=0を用いて, a=- k M+m g リ= M+m k 第1章一

回答募集中 回答数: 0