学年

教科

質問の種類

物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

カッコ5なんですけど最初自分写真のように解説とは違うやり方でやったんですがなんか答えが違うんですが なにか間違ってるところがあったら教えて欲しいです

媒質2 なる。 AD その山ある いは谷は, 2周期後どこまで移動するか。 移動 の軌跡を図に太い線で示せ。 (5) 一般に, A, B からの距離差が5.0cmの点は, どのような振動をするか。 また, それ らの点を連ねた曲線を図に細い線で示せ。 (6)線分AB上にできる定在波の腹はいくつあるか。また,これらの腹の位置の,点A からの距離を求めよ。 例題 27,150,151 148 波の屈折 図のように,媒質1と媒質2が境界面Aで,また媒質2と媒質3 が境界面Bで接している。媒質1から入射した平面波の一部が,境界面Aで屈折して媒 質2へ入っていく。 が屈折 図中の平行線は波の波面を表している。 媒質1における入射波の波長は 1.4cm,振動 数は50Hzである。 21.4 として計算せよ。 媒質1 45° (1)媒質1の中での波の速さは何cm/s か。 A Y (3)媒質2の中での波の波長は何cmか。 (2) 媒質1に対する媒質2の屈折率 n12 はいくらか。 媒質2 30° 質2 BC (4)媒質2の中での波の振動数は何Hz か。 (5) 媒質1に対する媒質3の屈折率 n13 を 0.70 とすると,媒質3 2に対する媒質3の屈折率 723 はいくらか。 例題 28,152

回答募集中 回答数: 0
物理 高校生

物理基礎の問題です! アンダーラインで引いたところがなぜこのような式になるのか分かりません。そもそもが間違っていたらご指摘お願いします。答えは○3みたいです。 分かる方お願いします!

物理基礎 問4 一般に,大きさTの力で引かれた一様な弦(糸) を伝わる横波の速さは, Tに比例することが知られている。 図5のように、水平な台上の左右のなめらかな滑車に通した糸の両端に質 量mのおもりと質量4mのおもりをそれぞれつるした。 左の滑車からの距 離がL, 右の滑車からの距離が2Lとなる位置の糸を振動装置の振動源Oに 固定して水平に張った。 振動装置は台に固定されている。 振動源 0 と左の 滑車の間の糸を糸 A, 右の滑車の間の糸を糸Bとする。 振動装置の振動数 を調節して,糸Aが共振して腹が二つの定常波(定在波) が生じるようにし た。 このときの糸A, B の振動のようすの概形を表す図として最も適当な ものを、下の①~⑤のうちから一つ選べ。 ただし, このとき糸Aが振動源 0を引く力の大きさと糸Bが振動源Oを引く力の大きさは異なっているが, 振動源は左右に動くことはないものとする。 4 L 2L 滑車 糸A 糸 B 滑車 振動装置 おもり 台 ・おもり m 14m 図5 糸B 糸 A 糸 A 糸B 定常波は生じない A) λ = L f = 4 Rimg B) = = * + kn4mg 問5 次の文章中の空欄 ア なものを,下の①~⑥のう 電磁波は, ある場所で生 ア なって空間を伝わるもので 進行方向が垂直な べて電磁波であり, 波長( 可視光線より波長が長い どで利用されている。 ① ア 縦波 縦波 縦波 横波 横波 ⑥ 横波 [23] 糸 A 糸B 糸 A 糸B -KN4mg L kamg 糸 A 糸B 2 L

回答募集中 回答数: 0
物理 高校生

破片aの水平方向の速さは分裂前の物体の水平方向の速さに等しいのですか。

AB 1:2 (S) 185. 空中での分裂 質量mの物体が, 水平から 45° の向きに速 2cで打ち上げられ, 最高点に達したとき, 質量が12の2 つの破片に分裂し, それぞれ水平に飛び出した。 質量の小さい破 片Aが出発点に落下したとすると, 大きい方の破片 Bは, 出発点からどれだけはなれた 位置に落下するか。 ただし, 重力加速度の大きさをg とする。 例題23 ヒント破片Aの水平方向の速さは、分裂前の物体の水平方向の速さに等しい。 185. 空中での分裂 解答 3v2 g 指針 水平方向では, 物体は内力のみをおよぼしあうので, 分裂前後 での水平方向の運動量の和は保存される。 また, Aは出発点にもどって おり,Aの水平方向の速さは, 分裂前の物体の水平方向の速さに等しい。 運動量保存の法則の式を立ててBの速さを求め, 水平距離を計算する。 解説 初速度の水平成分の 大きさは2vcos45°=vで あり(図1), 最高点での速度 はこの水平成分に等しい。 分 裂前に物体が進んでいた水平 方向の向きを正とすると, 分裂直後のAの速度はvとなる。 分裂直後 のBの速度をv とすると, 水平方向の運動量は保存されるので(図2), √20 A, B v2 [ひ m 2m 3 3 45° 正の向き 図1 v 図2 ←一連の運動において, 鉛直方向には重力 (外力) がはたらくため、 鉛直方 向の運動量は保存されな い。 最高点で物体は水平 方向に速さで飛んでい る。 破片Aが出発点にも どっているので破片 A の水平方向の速さも”で ある。 3 mv=mx(-v)+ 2m 3 × V2 02=2v また、初速度の鉛直成分は2vsin45°=vである。 打ち上げられてか V ら最高点までの時間を とすると, 0=v-gt t= g v2 出発点から分裂地点までの水平距離は, h=vt= ...① g 分裂してから落下するまでの時間はであるから,最高点から落下点 g 2v2 までの破片Bの水平距離は, L2=2vt= ...2 g 式 ①,② から, 求める水平距離Lは, L = 4₁+12= 0² + 2v2 3v2 g g g (1) ◎鉛直投げ上げの公式. v=vo-gt を用いている。 物体、およびBの鉛直 方向の運動は,いずれも 加速度の大きさがgの 等加速度直線運動なので, 発射点から最高点までの 時間と,最高点から落下 するまでの時間は同じに なる。 (9) 115

回答募集中 回答数: 0
物理 高校生

2枚目の(ウ)に書かれている「転倒し始める時は〜」のところが分かりません。なぜそれが成り立つのでしょうか?

例題1 剛体のつりあい ① 次の文中の 図のように、直方体の一様な物体Aが, 水平と45°の傾斜をもつ地盤Bの上に,質 量の無視できるロープCによって取りつ けられた構造物がある。 物体Aと地盤B とは、接触しているだけである。 をそれぞれ記入せよ。 に適する数値(負でない整数) A 4m 考え方の キホン M145° mg45 2m C B J 水平面 物体Aの質量 : m=1.0×10℃〔kg〕, 重力 加速度の大きさ:g=10[m/s'], 物体Aと地盤Bとの間の静止摩擦係 数および動摩擦係数 : μ=1/3,√2の値: 1.4とし, ロープCは十分強く, 伸び縮みしないものとする。 × 10°Nであり、地 × 10°N である。 (1) 静止しているとき, ロープCの張力は (ア) 盤Bが物体Aに作用する抗力の大きさは (イ)[ (2) 地震によって、 次第に強くなる上下動 (鉛直方向の動き)が起こ り,ある加速度が物体Aにはたらいたら, 物体Aが転倒 (物体Aが 地盤Bに対して,すべり離れなどの動きを起こし、回転して倒れ る状態)を起こし始めた。 その加速度の大きさは (ウ) m/s' であ り、ロープCの張力は (エ)[ |×10°Nである。 (3) 地震によって、 次第に強くなる水平動が起こり,ある加速度が 物体Aにはたらいたら, 物体Aが転倒 ((2)参照) を起こし始めた。 その加速度の大きさは (オ) m/s' であり, ロープCの張力は (カ) × 10°である。 〔東京理科大・改〕 力学において最も重要なことは, 力を正しく見つけることである。 そして力がわかれば,それらを互いに垂直な方向に分解し、力のつ りあいの式を2つつくる。 次に,適当な点のまわりの力のモーメントのつりあい の式をつくる。あとは, 以上の3つの連立方程式を解くだけである。なお, 静止 摩擦力はつねに最大静止摩擦力が働いているとは限らないので, はじめからその 値を IN とおいてはいけない。 まず, 未知数として文字で表し (例えばF),つ りあいの式を解いてFの値を求めてから, FUN の条件を課せばよい。また, 力のモーメントのつりあいの式は、任意の点のまわりのモーメントで考えてよい が、なるべく計算が簡単になるような点を選べばよい。 すなわち, ある力の作用 線上の点を選ぶと, その力のモーメントが0になるので計算が楽である。 1カ学

回答募集中 回答数: 0
1/6