学年

教科

質問の種類

物理 高校生

2番でなぜN=mgとならないのでしょうか? 向心力が働くみたいなことは、なんとなくわかるのですがどうも納得できないです。 教えて頂きたいです

~14, 求めよ。 べり出す のつりあい ngy J 215.2 AN ② "s") Scost-mg=U mg coso Ssine S= (2) 糸の張力の水平成分 Ssin0=mgtan0 が向 心力となる。 運動方程式 「mrw²=F」から, mg 1 基本例題30 鉛直面内の円運動 図のように,質量mの小物体が, 摩擦のない斜mid 面上の高さんの点から静かにすべりおりた。斜面 の最下点は半径rの円の一部になっている。重力 加速度の大きさをg として,次の各問に答えよ。 (1) 斜面の最下点での小物体の速さを求めよ。 (2) 斜面の最下点で, 小物体が面から受ける垂直抗力の大きさを求めよ。 天一 www 指針 (1) では,力学的エネルギー保存の 法則から速さを求める。 この結果を用いて (2) では、最下点での半径方向の運動方程式を立てる。 解説 (1) 最下点での速さを”とし, す べり始めた直後と最下点に達したときとで, カ 学的エネルギー保存の法則を用いる。 最下点を 高さの基準とすると, -mv² m (L sint) w-mg tanu=U Point 向心力は,重力や摩擦力のような力の 種類を表す名称でなく、円運動を生じさせる原 因となる力の総称で、常に円の中心を向く。 09 213 (基本問題 mgh= v=√2gh (2) 重力と垂直抗力の合力が,最下点での小物 th 体の向心力になる。 半径方向の運動方程式は, 大 v² _=N-mg N m r r (1) の結果を用いて N=mg(1+2h) mg Point 鉛直面内の運動は等速円運動とならな いが,各瞬間において、 等速円運動と同様の運 動方程式を立てることができる。 | 8. 円運動 101

解決済み 回答数: 1
物理 高校生

紫の線で示した部分の(n-1)tとは一体何を表しているのでしょうか? 教えてください🙇‍♀️

Ⅰ. 図1のヤングの実験の装置で, スリット 図 12933円 S2 の手前に厚さt, 屈折率n (>1) の透明 板を置き,波長入の同位相の光を S1,S2に 垂直に入射させた。 d<l, x<1とする。 x軸上の干渉縞の位置は,透明板を置く (1) 前に比べ,どちらにどれだけ移動するか。 (2) 干渉縞の位置が透明板を置く前と一致す 干し 緑の次数は異なる)ときの透明 板の最小の厚さ to はいくらか。 ⅡI. 装置から透明板を取り除き, 図2のよう 光路長 L₁= t+h₁ |光a 光b L2=nt+lz ->> a → S₁ d Xm= b Sta d 図2 ka n-1 So 光源 T Sil に S1,S2 から等距離の位置にスリット So を置き, 波長の光を入射させ (3) So を上に少し動かすと, 干渉縞の位置はS。 を動かす前に比べてどうなるか。 IS2 M 「考え方 I. 透明板を置いた後・・・ S1, S2 より tだけ手前の位置から点P までの光路差を考える。 光路差 d L₂-L₁ D =(n-1) t+(1₂-1₁) |M n-1 S2| (ヤングの実験と同じ) Sol 【透明板を置いた後の光a,bの光路差】(n-1)+(ーム)(n-1)+4x TOE THROAT 【強めあう条件】 (n-1) t+x=ma (m=0, 1, 2, ...) ml^ _ 1 (n-1) t mid 【明線の位置 xm】 d 【明線の間隔 ⊿x】 ⊿x=Xm+1-Xm= T Sol 12 x軸 x軸 Sil 透明板を置く前はxml- (1) ①から,干渉縞の位置は、x軸の負の向きに (n-1) tだけ移動する。 香川の 白 0 mm 005-mm 001 (2) ②から、干渉縞の間隔 ⊿x は, 透明板を置く前と変わらない。したがって,干渉縞が ⊿x の ちょうどk倍(k=1,2,..)だけ移動すれば,透明板を置く前の縞と重なる。 (n-1)1=k²&v₁ t= k=1のとき, 最小値 to よって, to=- P 透明板を置く前は4x= IM (3) ある (mo 次の) 明線について, So から点Pまでの 光の経路差は次の式を満たす。 (SoS2+S2P)(SoS1+SP)|=mod(=一定) S2| よって, (SoS2-SS1)+(S2P-SP)|=mod... ③ ・S』の位置によらず、 ③の左辺は (右辺が一定値ゆえに) 一定値になる。 以上から, SP-SP の値は, S を動かす前よりも後の方が小さくなる。つまり, 点Pの位 右上の図から, S を動かす前はSS2 = SoS1, So を上に動かした後はSS2>SoS」 となる。 置が下がる。 他の明線も同様であるから, 干渉縞全体がx軸の負の向きに移動する。 mid d 17 d

解決済み 回答数: 1
物理 高校生

物理のヤングの実験についてです。 最初の青線のところの(エ)の式変形が分かりません。 あと下の(キ)もわかりません。

170 第3編 波 基本問題 337. ヤングの実験次の を正しく埋めよ。 図のように, 単色光源をスリット So およびスリット 光源 S1, S2 を通してスクリーンに当てる。 So と S1,S2 の中 点M を通る直線とスクリーンの交点をOとする。 スリッ ト S1, S2 の間隔を d, MO の距離をとする。 また, 空 気の屈折率を1とする。 これは, 実験を行った科学者の名前からアの実験とよば れている。 S1 -Sol -M+₁- S21 スクリー スクリーン上で点Oから距離xだけ離れた点をPとするとき, 距離 SPはイ 距離 S2Pはウとなる。ここで, xやdに比べて1が十分大きいとする。|a|が1に 記 338 回折格子 図のように 格子定数の同 比べて十分小さい場合に成立する近似式√1+α=(1+1+を使うと,S,P と SPの光路差はエ】となる。 波長を入とすると, 点Pで明線となる条件式は m(m=0,1,2, ・・・・・) を用いてオとなる。 (a)波長 4.5×10-'m の青色の単色光源を用いたとき, 隣りあう明線の間隔はカm となる。 ただし, d = 0.10mm, l=1.0m とする。 (b) 波長 4.5×10-7m の青色の単色光源と波長 6.0×10-7m の橙色の単色光源を同時に 用いたとき, スクリーン上で, 青色と橙色の2色の明線が重なる位置が確認された。 2色の明線が重なる位置の間隔はキmとなる。 ただし, d=0.10mm, l=1.0m とする。 [北見工大改] 例題 66,343 A SEN 光と 折角を 光Iと 流水の 光が強め 人気の色に また、

回答募集中 回答数: 0
1/5