学年

教科

質問の種類

物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

最後の文について質問です。なぜ軽い原子核は核融合を起こしやすく、重い原子核は核分裂を起こしやすいのかがいまいちよく分からないので教えてほしいです。

とう かせい 質量とエネルギーの等価性 アインシュタインの相対性理論によると, 質 量はエネルギーの1つの形態であり, 質量mがエネルギーに転化すると mc2 だけのエネルギーEが発生する。 E=mc2 mc2 は静止エネルギーとよばれる。 ちょっと一言 質量はいわばエネルギーの貯蔵庫。 mc' は鉛筆が一本消滅する と,大都市が吹っ飛ぶくらいの大きなエネルギーだが,原子核反応 というkey がないと貯蔵庫の扉は開かない。なお, 単位は m[kg], c [m/s]ならE[J] だ。単位的には1/2m2と同じこと。 結合エネルギー 質量の大きなものほど静止エネルギーが大きいから,バ ラバラ状態の方が原子核の状態より高いエネルギーにあることになる。 そ のエネルギー差を結合エネルギー ⊿E という。 AE=Am c² 結合エネルギーは質量欠損⊿m と兄弟関係の量だ。 かくりょく ちょっと一言 原子核をバラバラにしようと思うと, 核子間に働く引力 (核力) に逆らって外から力を加え, 引きはがしていくという仕事をしなけ ればならない。この加えた仕事 (エネルギー)が質量という貯蔵庫に 蓄えられ, バラバラ状態の方が重くなるというわけだ。 結合エネル ギーは結合を壊しバラバラにするためのエネルギーだ。 High 結合エネルギーを核子数 (質量数) で割った値⊿E/A を核子1個当たり の結合エネルギーという。 これは原子核の安定性の目安になり、値の大き なものほど安定である。 原子核から核子1個を抜き出せば残りはもはや別 の原子核になるからだ。 たとえば酸素0から陽子1個を取れば窒素 Nに なってしまう。 かくゆうごう 軽い原子核はまとまった方が安定で核融合を起こしやすく, 重い原子核 は分かれた方が安定で核分裂を起こしやすい。

解決済み 回答数: 1
物理 高校生

問3の問題で、右向きに速度uを置いたので、設問の設定時にはuが負の速度として出てくると思ったのですが正でした。 なぜでしょうか? 教えてください🙇‍♀️

図のように、滑らかな水平面上に,質量Mの小物体Bが置かれ, その右方には, ばね定数kの軽い ばねが取り付けられた質量mの小球Cが置かれている。 いま, Bの左方から質量mの小球Aが速さvo でBに向かって運動し衝突した。 A, B, C の運動はすべて同一直線上で行われ, 空気の抵抗は無視で きる。また, A,B間の反発係数はe として,次の問に答えよ。 ただし,速度, 力積等のベクトル量は, 図の右向きを正とする。 A 10 (5 m-eM m+M 1 mvo ⑤ 衝突直後のA,Bの速度をそれぞれ”, Vとする。 これらを求めよ。 1 2 (5 -Vo m eM m+M m(m-eM) m+M V 5) V. ③③ -mvo -Vo 6 3 問2 衝突の瞬間, AがBから受ける力積を求めよ。 mM m+M (6 20 mM k(m + M) ハイレベル物理 前半 第4講 チェックテスト DV√TH OV√ m ① V. ② V. k m+M em - M m+M 6 (③3) -Vo em m+ M M V k -Vo (4) 6 V M(em-M) m+M -V (7) V (4 m m+M B -Vo M (1+e) M m+M -Vo 問3 Bがばねと接触している際, ばねが最も短くなるときのBの速度を求めよ。 M 10 2 V m+M m m+M fetal. 問4 問3のとき, ばねの自然長からの縮みはいくらか。 -Vo mM √k(m-M) 4 3 V m+M V k -V 3 (1+e)mM (m+M)2 -Vo mM m+M V (1+e) mM m+M 8 5 4 V ⑦V ooooo -V0 (1+e) m m+M Vo (8) -Vo (1-e) mM (m + M)² m-M k m √k (m + M) V C (1+e)mM m+M ⑧V m 4 Vo M √k(m + M)

解決済み 回答数: 1
1/13