学年

教科

質問の種類

物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

(9)はどうして赤ペンのような式になるんですか?? 私の考え方のどこが間違えてるのか教えて欲しいです🙇🏻‍♀️

II 次の文章の空欄にあてはまる数式, 数値または語句を, それぞれ記述解答用紙の所 定の場所に記入しなさい。 ただし, (1)~(10)の解答欄には数式または数値を, (11)の解答 欄には語句を記入しなさい。 (33点) 図1に示すように抵抗とコイルをつないだ回路で, スイッチSを閉じたり開いた りしたときに回路に流れる電流を考えよう。 電池の起電力をE, コイルの自己インダ クタンスをL, 2つの抵抗の抵抗値は図1のように r, R とする。 電池と直列につな がれた抵抗値rの抵抗は電池の内部抵抗と考えてもよい。 また, 導線およびコイルの 電気抵抗は無視できるものとする。 b a d E 図 1 h In R g ERO h S スイッチSを閉じた後のある時刻にコイル, 抵抗値 R の抵抗を図1の矢印の向き に流れる電流をそれぞれ I, I と書くことにする。このとき, 抵抗値の抵抗を流れ る電流は (1) となる。 経路 abdfgha についてキルヒホッフの法則を適用すれ ば、電池の起電力と回路に流れる電流の間にはE= (2) の関係が成り立つ。 一方、このときコイルを流れる電流が微小時間 4tの間にだけ変化したとすると, -10- LI+(r+B)I

回答募集中 回答数: 0
物理 高校生

(6)で磁場による力が働いているのにエネルギー保存則が成り立つ理由を教えてください

(4)(ア)から(エ)の全区間でコイルに生したジュール熱の総量を求めよ。また、この総量とコイ ルの速さを一定に保つために作用させた外力との関係を述べよ。 129. 〈斜面上を動く正方形コイルに生じる誘導起電力〉 図のように、水平面となす角度が ⑥ (0x0<)の十分 長い斜面がある。この斜面に、質量がm, 電気抵抗が R, 磁場 B JAC [21 高知大改 A D 1 m.R B M x 0 1辺の長さがdの正方形の1巻きコイル ABCD を置く。 いま、斜面にそって下向きをx軸にとる。斜面上のx≧0 この領域には、面と垂直上向きに磁場があり,その磁束密度 の大きさはxの関数として, B=kx で与えられる。 こ ここでは正の定数である。 コイルの自己インダクタンス, およびコイルと斜面の間の摩擦力はないものとする。 重力加速度の大きさをgとする。 初めに、コイルの辺BCがx軸と平行で,辺AB と辺 CD の位置が,それぞれ, x=0 と x=dになるように置いた。 この状態から, コイルを静かにはなしたところ, コイルは辺 BCがx軸と平行なまま。斜面にそって下向きに動きだした。 辺ABが位置 xにあり,速さで運動している瞬間について,(1)~(6)に答えよ。答えの式 は,m,g, R, k, x, devのうち必要なものを用いて表せ。 (1) 辺ABの両端に生じている誘導起電力の大きさ V」を求めよ。 また, 電位が高いのは端A と端Bのどちらか答えよ。 (2) コイルに生じている誘導起電力の大きさ Vを求めよ。 Xxx dayRoux よって、 E=Bwx OPの電力の大きさV[V] とれるから V-12/Baw まるようになるか OPのである。 P(W) 抵抗で R に流れる電流の大きさ であるから 受ける力の式「F= (4)の向きが②だから、フレ 仕事率(W) は、 (7) Baw Ba 131〈相互誘導〉 2 AR ファラデーの電磁誘導の法則 比較する。 が流れているコイル <コイル」を貫く磁束のは、 SISL N₁ 電流が

回答募集中 回答数: 0
物理 高校生

最後の文について質問です。なぜ軽い原子核は核融合を起こしやすく、重い原子核は核分裂を起こしやすいのかがいまいちよく分からないので教えてほしいです。

とう かせい 質量とエネルギーの等価性 アインシュタインの相対性理論によると, 質 量はエネルギーの1つの形態であり, 質量mがエネルギーに転化すると mc2 だけのエネルギーEが発生する。 E=mc2 mc2 は静止エネルギーとよばれる。 ちょっと一言 質量はいわばエネルギーの貯蔵庫。 mc' は鉛筆が一本消滅する と,大都市が吹っ飛ぶくらいの大きなエネルギーだが,原子核反応 というkey がないと貯蔵庫の扉は開かない。なお, 単位は m[kg], c [m/s]ならE[J] だ。単位的には1/2m2と同じこと。 結合エネルギー 質量の大きなものほど静止エネルギーが大きいから,バ ラバラ状態の方が原子核の状態より高いエネルギーにあることになる。 そ のエネルギー差を結合エネルギー ⊿E という。 AE=Am c² 結合エネルギーは質量欠損⊿m と兄弟関係の量だ。 かくりょく ちょっと一言 原子核をバラバラにしようと思うと, 核子間に働く引力 (核力) に逆らって外から力を加え, 引きはがしていくという仕事をしなけ ればならない。この加えた仕事 (エネルギー)が質量という貯蔵庫に 蓄えられ, バラバラ状態の方が重くなるというわけだ。 結合エネル ギーは結合を壊しバラバラにするためのエネルギーだ。 High 結合エネルギーを核子数 (質量数) で割った値⊿E/A を核子1個当たり の結合エネルギーという。 これは原子核の安定性の目安になり、値の大き なものほど安定である。 原子核から核子1個を抜き出せば残りはもはや別 の原子核になるからだ。 たとえば酸素0から陽子1個を取れば窒素 Nに なってしまう。 かくゆうごう 軽い原子核はまとまった方が安定で核融合を起こしやすく, 重い原子核 は分かれた方が安定で核分裂を起こしやすい。

解決済み 回答数: 1
物理 高校生

(f)なのですが、Iが正なのを考慮していると思うのですが、各電圧の正負がいまいちわかりません。詳しく解説お願いします。

東京工業大 東京工業大 問題 25 27 ロックどうし及び も傾くことはな =4の場合のみ T" 壁 2 (50点) 図1のように,長さの導線ab, cd と長さlの導線bc を直角につないで 作ったコの字形の導線 X を,水平に固定された直線状の導線Yにつり下げて 作った長方形の回路 abcd を考える。 Yの区間 adの一部は電池, 抵抗器, コイ ルスイッチで作った装置Zで置き換えることができ, Yの両端は絶縁されて いる。XはYを軸に滑らかに回転できるが, 平行移動や変形をしないものとす る。なお, YとZは動かない。 ab, cdの質量は無視でき, bcの質量はmであ り、重力加速度の大きさをとする。 また、磁束密度の大きさがBである鉛直 上向きの磁場が一様に存在している。 導線の太さと電気抵抗, コイル以外の自己 インダクタンス, 電池の内部抵抗, 空気抵抗はすべて無視できるものとする。 回路を流れる電流の正の向きをa→b c d と定める。また,aを通る鉛直 方向の直線と abがなす角を0とし,a から bに向かう向きが鉛直下向きのとき =0であり,ab→c→dの向きに回る右ねじが進む向きを正の向き と定める。さらに,Xの角速度をωとし, 微小な時間 At の間に が △0 だけ変 である。 化するとき,ω= も静止したまま At Asstod 9 を用いて表せ。 の大きさを, つなぐ糸の張力 Mがある値 M min 巨囲でどのように は 0 の値によっ Y d Z A AB a b m C X 図1 [A]図2のように、電圧Vの電池,抵抗値Rの抵抗器 スイッチSを使って 作 adの一部を置き換える。 スイッチをp側に入れると抵抗器のみ 2024年度 前期日程 物理 2024年度 前期日程 物理

回答募集中 回答数: 0
物理 高校生

16番 右向きの運動なのに静止摩擦力が右向きに働くのはどうしてですか?Bを中心に考えたらBは左向きの運動をしてるから摩擦は右向きに働くってことですか?

軽いばねとは、ばね自身 SA できるばねのこ とである。 5. _とBの接 接の場合 ... るので ① もりの あいの式 00000000000000000~ かけ できる。 傾きの 度 一般に、 直列接続の場合 +++ を考える。 (2) (3) 重力を斜面方向の成 は常に力がつりあう。 NV-mgcos 6=0 ②より =-g (sin6+pcos 0)[m/s] 2 N 方向下向きを正 F = N 向きとすると, mg in 方程式は mg cose 15.. (1) (s) Bの質量をm[kg], A. Bの加速度の大 きさをα [m/s] とする。 N Bの加速度は重力 mg と張力 Tの合力に よって生じているので、運動方程式は may=mg-Ti よって Ti=m(gla) =2x(10-5)=10(N) WA T Mo A No.L <模擬試験、本試験でよくありがちな設定です> 16. 床の上に物体 A, B が乗っている。 AとBの質量をそれぞれ M, m [kg], 重力加速度の大きさを g 〔m/s2] とす <前問 m 17. 右の B M A 小物体 上に乗 の間の (b) Aの加速度は張力 T によって生じているので Ma、T、よりM-12 (kg) (2) (3) (1) と同様に、Bの運動方程式は (1)の場合、 A を水平方向左向 Na 引いて静止させたときに、 引く力の大きさを T, A. B 間の糸の張力の大きさを To る。 Aと床との間の摩擦は無視できる。 AとBとの間の静止摩擦係数をμ, 動摩擦係数をμ' とする。 AをカF [N] で水平に引く。 の間の mas-mg-T 25t Ti=m\g-as) -2x(10-4)-12(N) とすると, A, Bそれぞれの 力のつりあいより A: T-To=0 T B: T-mg-0 (b) Aの加速度は、張力T と動摩擦力F の 合力によって生じているので (1) F が小さいときは、静止摩擦のため AとBは一体になって運動する。 このときのAの加速度 α, B にはたらく摩擦力を求めよ。 与える。 (1) 小 Mg よって T=mg -2x10=20(N) Max-Tr-F よって FT-Ma=12-2×4=4(N) tmg つまり、引く力の大きさで" はBの重さに等しい。 (c) 水平面がAに及ぼしている垂直抗力の大きさをN [N] とする。 鉛直 方向の力のつりあいより N-Mg = 0 N=Mg=2×10=20 (N) F=Nの式より メード 0.2 (2)Fがある大きさ Fo を越えると, BはAの上ですべるようになるFを求 めよ。 (2) 板 - (3) 小 N (3)引FFより大きいとき, BはAの上ですべりだす。 このときの AおよびBの加速度 αA, B を求めよ。 てす 最 F=ma キニナ すべり出す直前のみ つかこるのが at= F m =Mag Fo=UN 床からの垂直抗力 ∫の 反作用 F-f A. B にはたらく力は図のようになる。 このときBがAの上ですべって いても一体となって運動していても、基本的に力は同じようにはたらい ている(ただしの大きさや静止摩擦力、動摩擦力のちがいはある)。 (1) A. Bは一体として運動 しているので, AとBの加 速度は等しく, ブは止 摩擦力である。 図よ り, A. B それぞれの運動 方程式は A 最大摩擦力ではない NO 反作用 Mg ので、f=μNとしてはいけ ない。 A: Ma=F-fa... ① B:ma=f&B4 ①+②より手を消去すると (M+m)a=F amm (m/s²) この結果を②式に代入すると M+m mF [N] f=mx+m+m (2)F=Fのとき、BはAに対してすべるかどうかの境い目にあるので、 JN (Nは物体Bにはたらく垂直抗力)の関係が成り立つ。 (1)の答え にこのことを代入すると ノmFe=uN=μmg M+m Fo-pl (M+m)g[N] (3)FF のとき, BはAの上をすべる。このときAB間にはたらく摩擦 カノは動摩擦力で B 物体AとBにはたら 力は互いに作用と反作 用の関係なので、 お互いが じ大きさである。このことは BがAの上で一体となってい でもすべっていても成り立つ 関係である。 C 物体Bの鉛直方向の つりあいより N-m=0 よって N=mg juN=pmg とBは別々の加速度 Ch, 4sで運動するので①と② を用いた。 # M =F.μlog Mg M

未解決 回答数: 1
1/38