学年

教科

質問の種類

物理 高校生

(3)の詳しい解説お願いします

50.F-xグラフ 解答 (1) ばね定数 (2)(3)1/12倍 指針フックの法則から,F-xグラフの傾きが表 している物理量を考える。 解説 (1) フックの法則 「F=kx」 から, F-x ラフの傾きは、ばね定数を表している。 (2) F-xグラフの傾きは, ばね定数を表す。 図から、 グラフの傾きが大きいのはAである。 A 40= 2.4. (2) ばね定数が40N/mのばねに取り換え, (1) と同じ力でばねを押し縮め たとき, ばねの縮みは何mか。 24=40x 105 思考 0.6 513 50F-xグラフ 2本のばねA,Bについて FA 引っ張る力Fと, ばねの伸びxとの関係を調べたとこ 3、図のようなF-xグラフが得られた。次の各問に 答えよ。 (1) グラフの傾きは何を表しているか述べよ。 B (3) ある力F でばねを引っ張っ たとき, ばね A, B はそれぞれ X, XB だけ伸びたとする(図)。 A, B のばね定数ka, kB は, グ ラフの傾きに対応するので, FA B Fo (2) ばねA,Bのどちらのばね定数が大きいか。 0 XA XB x Fo Fo kA= kB= XA XB Aの伸びは,Bの伸びの半分であったので、 2x=xBから, Fo Fo 1 kB= = -KA XB 2xA 2 したがって, Bのばね定数はAのばね定数の 1/12 倍 である。 別解 (3) 同じ力を加えているので,フックの 法則から, F=RAXA F=kBXB RAXA=kBxB Aの伸びはBの伸びの半分であったので, XA XB kB= 11/23 である。したがって, XA XB -KA 同じ力を加えたとき,Aの伸びはBの半分であった。 Bのばね定数は Aのばね定数の何倍か。 ただし, 分数のまま答えてよいものとする。 50

回答募集中 回答数: 0
物理 高校生

Ⅳの(3)でd/3までの釣り合いが安定でそれより大きくなると不安定になる理由がわからないです。教えて頂きたいです。よろしくお願いします。

図 2-3 (a) のように, 前間と同じ平行板コンデンサーの極板P を自然長 ばね定数の絶縁体の軽い ばねに接続し ばねの他端を壁に固定した. また, 極板 P2 を壁から距離 l+dの位置に固定した (極板の厚さ は無視できる)、 極板 P1 P2 には, それぞれ電荷 +Q (Q > 0), -Qが蓄えられている。 また, 壁とばねの静 電誘導による電荷は無視できるものとする。 質量mの極板P は極板P と平行な位置関係を保って左右にな めらかに動くことができるものとする。 極板P1 に力を加えて壁から距離の位置に保持した。 極板P1 と極板 P2の間の電場の大きさをE。 とする. 図2-3 (b) のように極板P」を壁から距離(+ェの位置にゆっくりと移動した。 極板 P, にばねからはたら く力と極板間の静電気力がつりあうときの位置を Q, Fo, k, m, co のうち必要な記号を用いて表せ、ただ し, 0<x<d とする. ⅣV 次に, P1 を図2-3(a) の位置に戻し、 図2-4 (a)のようにスイッチと電圧Vo(> 0)の直流電源に接続し た。その後、スイッチを閉じ, 極板 P, に力を加えて図2-4(b) のように壁から距離+æの位置にゆっくり と移動した(ただし<z<dとする)。その後,極板 P, を移動するために加えていた力をなくした。導線が -Kx Pl + Q 0000000000 d (a) 10000000 極板P が及ぼす力は考えない (1) 極板 P1 が壁から距離1+の位置にあるときに極板P, にはたらく力F (x) を Vo, S, d, z, k, m, Eo のうち必要な記号を用いて表せ。 ただし, 極板 P1 から P2 に向かう向きを正とする. (2) 極板 P1 にはたらくばねからの力と極板間の静電気力がつりあう位置が存在するためには, Vo はある上 限値Vm より小さくなければならない。このVm を S, d, k, m, so のうち必要な記号を用いて表せ. (3) Vo Vmの場合に存在するつりあいの安定性について説明せよ。 ただし, 「a <æ <bの範囲に存在す るつりあいは安定(または不安定)」 という形式で,存在するすべてのつりあいについて言及せよ. Foyd FEQ P₁ P2 +Q 0000000000 HI l+x (b) ・ 114471 9 図2-3 P₁ P₂ 0000000000 V₁ (a) 図2-4 l+x d-x GV (b) 萬 Fol F:EG

解決済み 回答数: 1
物理 高校生

この問題の(エ)と(オ)で、自分の考え方ではどう間違っているのかがわかりません。(エ)は速さなのでm/sを使ってL/2L/3vとしました。(オ)は比を使って求めました。この考え方ではダメな理由をお願いします。🙇

36. 〈木材に打ちこまれた弾丸> 図のように,水平な床上に置かれた質量 M 〔kg〕,長さL〔m〕の 木材に,質量 m 〔kg〕 の弾丸を水平に打ちこむ。 弾丸は木材の中を 水平に進んでいく。弾丸が木材から受ける抵抗力は,速度や場所に よらず一定として次の空欄を埋めよ。 ただし, 木材と弾丸の運動は 直線上に限られ,弾丸の大きさは無視できる。 L m M 木材を床に固定し,弾丸を速さ” [m/s] で打ちこむと 1/3の深さまで進入して止まった。 このとき,弾丸が木材から受けた力積の大きさは ア [N.s], 抵抗力の大きさは 〔N〕, [イ [N] である。 よって, 弾丸が木材に進入してから止まるまでの時間は,ウ〔s] で ある。 また, 弾丸が木材を貫通するには,エ xv [m/s]以上の速さで打ちこまなければ ならない。 木材を固定せず, 床面がなめらかであるとき, 弾丸を速さ(エ)×vで打ちこんでも木材を貫 通しなかった。 弾丸は,オ ×L〔m〕の深さまで進入し, それ以降は木材といっしょに一 定の速さ xv [m/s] で動いた。 [18 大阪医大〕

解決済み 回答数: 1
1/18