学年

教科

質問の種類

物理 高校生

コンデンサーについてです。 (1)の解説のところで、流れる電流は少しずつ小さくなっていくとあるのですが、何故でしょうか。 自分のイメージでは、例えばコンデンサーには10の電気量を貯められて電池は単位時間当たり1の電気量が放出されるとした時に、流れる電流は常に1でありコンデン... 続きを読む

チェック問題 1 コンデンサーの充放電 10分 図の回路で、 (1) スイッチを aに入れコンデ ンサー Cを充電してから十 分時間が経つまでに R で発 生した全ジュール熱はいく らか。 R₁ R₂ R3 (2)その後スイッチをbに切りかえてから,十分時間が経つ までに R2, R3で発生したジュール熱J2, J3はそれぞれい くらか。 ただし, はじめの電気量は0とする。 解説 (1) 図のように,流れる電流はだんだん小さくなっていき, つ いには0に近づいていくぞ。 (前) ON! 直後 図 a 後 十分時間後 +++ +CV Ev -CV このようなとき,消費電力の公式 I2Rで全ジュール熱を求められるかな? ムリです。 電流I→I』→0と変化していくから, I'R この式を単純に使えません。 このように,電流Iが一定でないときは, 1秒あたり発生するジュー ル熱の式IR を使って直接全ジュール熱を求めることはできないね。 そ こで,〈回路の仕事とエネルギーの関係》で間接的に求めるしかないのだ。 CS CamScanner でスキ 第14章 回路の仕事とエネルギーの関係 |183

解決済み 回答数: 1
物理 高校生

右ページ黄マーカー部分について、なんでmω²=Kと置くのかが分かりません。単振動定数みたいな感じでKのまま答えに書くのか、それともKは問題では与えられててそれを元にmやωを求めていくのかなーって色々考えたんですけど分かりませんでした。解答お願いします!

4 データ ③ 周期 Tとその求め方 周期Tとは,単振動に対応する円運動が1周回るのにかかる時間 のことだ。円運動の角速度w (1秒あたりの回転角)は,この周期を用いて、 さて、 ②式と④式に共通して入っているものは何かな? えーと、 ②式と④式には共通の A sin wtが入っています。 2 [rad] 回転する w (rad/s) = T [s]間で かくしんどうすう と書けるね。 このωのことを単振動では角振動数という。 逆にこの式より、 周期 T は、 角振動数w を使って, 2π T= w そうだ。 ここから式変形が続くけど,一つひとつ丁寧に追ってね。 ②式を, A sinwt=xxo として,これを④式に代入すると, a=-ω'(x-x) ………⑤ となるね。 この⑤式は, 時刻によらず、いつでも成り立つ式だね。 ここで、この式の両辺に質量m を掛けてみると, ma= -mω^(x-x) ・・・ と書くことができるね。 さて、図6のように, 半径Aで角速 度ωの円運動を真横から見た単振動を 考えよう。 円運動が点Pを通過した瞬 間を時刻 t = 0 とする。 このとき対応 する単振動の (中) の位置 P′の座標を x=xとしよう。 時刻で円運動は点 Qを通過するが,このときまでの回転 角はwfとなっている。 このときの単 振動の位置Q′の座標は、図6より, さらに、この⑥式の右辺の係数をmw²=(定数K) ...... ⑦ とおくと, ma = -K(x - ): ......(8) wt: LAW となるね。 この⑧式は何を表しているかな? wt [00] =Asinwt...... ② Asinw P'Q間の距離 図6 となっているね。 左辺が ma・・・あ 運動方程式です! そのとおり。 この式はまさに単振動の運動方程式となっているね どうやって,この式から周期を求めるんですか? まず, 物体が座標 x (0) にあるときに運動方程式を立てて⑧式の形に もっていくと,とKが出るでしょ。このとき, ⑦式から,角振動数 また、このときの単振動の速度vと, 加速度α は, 円運動の接線 方向の速度Aw と, 向心加速度 Awをそれぞれ真横から見たものと w= K km ⑨ が求まる。 wが求まれば、 ①式より, して、図6より, T= =2L=2 mm Aw coswt. ③ a = Aw'sin wt....④ ここまでの話は長かったけど. 物理では公式を導く過程が大切 だから、一つひとつ確認してね 右向き正より ⑨より となっているね。 ここまで, じっくりと図6とニラメッコして もう となって, 単振動の周期 Tが求まるんだ。 CS度速canner でスキャン 第17章単振動 | 221

解決済み 回答数: 1
物理 高校生

(2)の後半の「遠心力が重力より勝っていればたるまない」から、(遠心力)≧mgという式だと考えたのですが、解答では(張力)≧0となっていてそれが何故か分かりません。θ=180°において張力がある場合下向きに力が働くと思い、だとするとたるんでしまうと考えています。解説お願いします!

チェック問題 2 振り子の円運動 糸の長さ おもりの質量mの振り 子がある。 おもりに最下点で初速度 v を与えた。 標準 6分 (1) 振れの角が0のときの糸の張力T を求めよ。 (2) 糸がたるまずに1周するには vo はいくら以上必要か。 解説 (1) 《円運動の解法》 (p.191) で解く。 STEP 1 中心は点O 2 半径1, 3速さ” M m 45 は未知。 さぁ、どうやって求める? 速さときたらエネルギー。 いまは, 摩擦熱は出てな いから《力学的エネルギー 保存則》 (p.162) ですよ。 ☐ キミの言うとおりだ。 式を立てると, Vo mg 2 = mvo -m² + mg/l(1-cos 0 ) 遠心力 図 a よって、v=√vo2-2gl(1-cose) STEP 「回る人」から見て,遠心力 m を作図 STEP 3 重力を半径, 接線方向に分解しよう。 ここで糸は伸び縮みしない ね。このことから,半径方向には確実に力のつり合いが成り立つので, v² T T = mg cos0 + v² ② mT ②に①を代入すると, Vo 2 - T=m + g(3 cosa - 2)} ...... CS CamScanner でスキャン 第15章円運動 | 193

解決済み 回答数: 2
物理 高校生

垂直抗力Nについて詳しく教えてください! 自分の解釈では重力mgに対して反作用的に地面などから受ける力だと思っていたのですが、この問題の(2)の図bで、「台は小物体から垂直抗力の反作用の力Nを受けて」とあり、反作用の反作用は作用だからN=mgcosθじゃん!って思ってしまい... 続きを読む

ICS チェック問題 2 台の加速度が未知のとき 質量Mで傾角30°の台を、なめら かな水平面の上に置いた。 ここで, 質量mの小物体を台のなめらかな 斜面上に乗せた。 税込 15 分 う〜ん、 小物体についてはもうこれ以上立てられないし~。 L まだ式を立てていない物体がある 力の作図 慣性力 ナシ! (1)台の加速度を右向きにAとし, M 130° え〜と, →A あ! 台自身ですか? 1 30° 反作用のカ 'N 図 b 台上から見た小物体の加速度を斜面に沿って下向きにと して, 台上から見た小物体の運動方程式を立てよ。 (2) a, A をそれぞれ求めよ。 (3) 小物体が台上をLだけすべるのに要する時間を求めよ。 解説 (1) いつものようにだれから見て,どんな慣性力を受けるのかを 言ってみて。 気付いたね。 そこで,床から見た 台の運動方程式を立てよう。 図bで, 台は小物体から垂直抗力の反作用 (p.55) の力Nを受けて, 右向きに運動 している。ちなみに、今回は床から見ているから、慣性力は全くなしだ よ。見る人に注意! Nを分解して水平方向の運動方程式を立てると 台の加速度が未知のときは、 いつも床から 見た台の運動方程式を立てるよ MA=Nsin30° ハイ。 右向き A の加速度をもつ台の上から見るので、慣 性力は左向きに mA です。 以上で,3つの未知数a, A. Nで式 ① ② ③がそろった。 ②③に代入して MA = 優 いいぞ。 垂直抗力をNとして軸方向 に慣性力と重力を分解する (図a)。 N 方向の運動方程式は. 慣性力 ma=mAcos30°+mg sin 30° 土 mA+ 30 ...... y 方向の力のつり合いの式は、 x N + mAsin30°= mg cos30° ・② 30° 図 a (2)(1)で立てた①②の式だけで, a. A は求まるかな? 未知数がα A, N の3つもあって、 2つの式①、②だけ では足りません。 あと1つどうしても式が欲しいです。 いかにも。じゃあ、あと1つの式はどうやって立てるの? CamScannerキャン 180 | 物理の力学 mg - 1/2mA/1/2 √3 -mo よって, √3m (M+1m)A = mg T. A=4M+m ①より, a= √3 1 -A + 2 2(M+m) 294M+m ④より (3) 台の上から見て、台上に軸を立 てる (図c) = x=Lより, 等 加速度運動の [公式] (p.20) より ~g ⑤ g = 2L ..t₁ = a = L(4M+m) 答 (M+m)g ⑤より t=0 (対台) t=t 04 図 C 第14章 慣性力 181

解決済み 回答数: 2
物理 高校生

答えを見てもなんでこうなるのかわかんないです 解説お願いします😭😭

[105 (1) kd m -2μ' gd [m/s] (2) d- kd (3) 2μ' mg 指針 (1)(2) 動摩擦力の仕事の分だけ、力学的エネルギーが変化する。 (3) 動き出さない場合、 摩擦力が最大摩擦力以下である。 - (μmg) x d kd² S 解説 (1) 求める速さをv[m/s] とすると, (力学的エネルギーの変 化) = (動摩擦力がした仕事) だから, (1/2 mv² + 1/2 k× 0²) - ( 121 m × ² + 1/ kd²) ゆえに、 m 別解 運動エネルギーの変化と仕事の関係より , 2u' mg (m) k mv² - 1m x ² = 1/2 ke 2μ'gd[m/s] (v<0は不適) kd² 1/2 k ( x + cand = k(x+d) (x−d) mg ・kd2+1- (μmg) xd} = −μ mg (x+d) -2-d² x+d+ 0 £ y₁ = /k(x−d) = −µ² mg 2μ'mg ゆえに, x=d- - [m〕 (r=-dは不適) k (3) 静止した瞬間に、摩擦力は静止摩擦力[N] となる。 動き 出さないときは静止摩擦力とばねの弾性力がつり合っている ので, 24 mg f-kx=0 £₂7₁ f= kr = kld_²4²₂n また,静止摩擦力と最大摩擦力 (μmg) の関係より.f≦pomg kd ゆえに、≧ --2pe [105 摩擦力がはたらくとき のように、力の向きと 運動の向きが逆向きの とき、その力がした仕 事は負になる。 ゆえに、 v= --2μ' gd [m/s] m (2) 止まったときのばねの縮みを [m]とすると, (力学的エ (2) ネルギーの変化) = (動摩擦力がした仕事) だから, (1/2 m × 0 ² + 1/2 k²²) - (1/2 m × 0² + 1/2 kd² ) =-(μ'mg) x(x+d) センサー 29 ●センサー28 動摩擦力がはたらくときは, 力学的エネルギーが保存さ れていない。 (力学的エネルギーの変化) = (動摩擦力がした仕事 ) N 0000000000 (1) 自然の長さ 00000000000 00000000000 「00000000000 kdmg === /k(2² N ]= V mg kr²-. kd² -k(x²-d²) F'='N x+d Rx 12 (+α)(エー) -k(x+d) (x−d) 別解 運動エネルギーの 変化と仕事の関係を用いて も求められる。 6 仕事とエネルギー 6 53

解決済み 回答数: 1
1/2