学年

教科

質問の種類

物理 高校生

物理力学の質問です。 問2の式の右辺の成り立ちの意味がわからないため教えてください。

(14. センター追試 [物理Ⅰ] 改) ☆☆☆ 思考 判断 表現 13 摩擦のある水平面上の運動 5分 図のように、粗い水平な床 m F の上の点0に、質量mの小物体が静止している。この小物体に、 床と角度をなす矢印の向きに一定の大きさFの力を加えて、点 0から距離にある点Pまで床に沿って移動させた。小物体が点 Pに達した直後に力を加えることをやめたところ、 小物体はだけすべって、 点Qで静止した。ただ し、小物体と床の間の動摩擦係数をμ'′ 重力加速度の大きさをgとする。 問1点0から点Pまで動く間に、 小物体が床から受ける動摩擦力の大きさを表す式として正しいも のを、次の①~⑦のうちから一つ選べ。 ① μ'(mg+Fsin0) ②μmg-F'sin0) ③μ'(mg+Fcose) ④μ'(mg-Fcose) ⑤μ'(mg+F) ⑥μ'(mg-F) ⑦ μ'mg 小物体が点Pに到達したときの速さをfを用いて表す式として正しいものを、次の①~⑥のうち から一つ選べ。 「21(F+f) 21 (Fsin0+f) 21(Fcose+f) ① (2) ③ m m m 21(F-f) 21(Fsine-f) 21(Fcose-f) ④ ⑤ ⑥ m m m 問3 小物体が動き始めてから点Qに到達するまで、 点0と小物体との距離を時間の関数として表した グラフとして最も適当なものを、次の①~④のうちから一つ選べ。 さい a 距離 ① 距離 ② 距離 距離 ④ 1+1'1 1+1'1 1+1'1 1+1' 301 1 I 時間 時間 時間 時間 ( 13. センター本試 [物理Ⅰ] 改)

未解決 回答数: 1
物理 高校生

1番最後の問題は相対速度でも解けるんですか? 等速直線運動じゃないと相対速度は使えないとかありますか?

10 (1) Bは左向きに Bの μmgを受ける。 とすると、 運動方程式は μmg B ときの運動方程式を記せ。 a=-μg A ma= -μmg (3) しばらくして、等速度運動になった場合 の速さを求めよ。 2 1 公式よりv=v+at=vo-ngt... ① (2)Aは動摩擦力の反作用を右向きに受ける (赤矢印)。 AA とすると, Aの運動方程式は M=2.0[kg].0=30° のとき、 図2の曲線 のような実験結果が得られた。 なお、 図2の 斜めの点線は、時間t=0 のときの接線としg=10(m/s) とする。 (4) 動摩擦係数を求めよ。 (5) 空気の抵抗力の係数を求めよ。 (岐阜大 + 東京大) 012345 t[s] 図2 ③ やり に対 MAμmg ...② . A=umg M ②左辺 (M+m)A したがって, A の速度Vは V=At = μm gt 「してはいけ M (3)v=Vより vv-μgto=Hmg Moo Egto ∴. to= M μm+M)g 19 m (4)V=Atom+M Vo 3- を求めてもよい (5) Aに対するBの相対加速度は a=a-A=-m+M Vの方が計算しやす μg M A上の人が見れば の単純な運動。ただし、 てはその人が見た値で。 Aに対しては、 Bは初めでやってきて 加速度αで運動し、やがて止まる。 したがって Mul OF-²-201 1= 2 (m+M)g 別解 固定台に対する運動を調べてもよい。 x x = Vo x=voto+mato2 X x-A 右図より Ix-X として求められるが, 本解の方 X が計算が速く、 応用範囲も広い。 B vo S₁ S3 A S2 なめらかな水平面S, S. と鉛直面 S3 からなる段差のある固定台がある。 面 S2 上に, 質量Mの直方体AをS, に接す るように置く。 Aの上面はあらく その高 さは面Sの高さに等しい。 質量mの小物 体BとAの間の動摩擦係数をとし、重力加速度をgとする。 いま B を初速で水平面 S, 上から, Aの上面中央を直進させたところ, A は運動をはじめ,ある時刻 t 以後, 両物体の速さは等しくなった。 BがA上に達した時刻をt=0とする。 時刻to より以前の時刻におけ るBの速さは (1) で, A の速さは (2) である。 toは (3) で、 そのときの速さは (4) である。 また, BがA上を進んだ距離は (5) である。 (岡山大 ) する

回答募集中 回答数: 0
物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
1/43