学年

教科

質問の種類

物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
物理 高校生

(3)の青ペンのところがわかりません。 どうして変位を-4mとして解くのですか

問題 03 相対速度・ 相対加速度 第1章力学 物理基礎 公式 相対加速度 wwwww (Aに対するBの相対加速度)(Bの加速度) (Aの加速度) \ www Aが基準 www 基準を引く 図2のv-tグラフの傾きから, Aの加速度は1.0[m/s], Bの加速度 はαB=2.0〔m/s2] と読み取れるので, 求める相対加速度4AB 〔m/s2] は. aAB = AB-AA= -2.0-1.0=-3.0[m/s2] (3)(1),(2),Aに対するBの相対速度, 相対加速度を求めた。 これより, 時 刻 t = 0 におけるAに対するBの運動のようすを図示すると、下図のように なる。 図1のように,一直線上で運動して いる物体AとBがある。 時刻t=0に おいて,物体AとBは4.0m離れてい て, v-tグラフ (図2) のような等加速 度直線運動をしていた。 ある時間後, 物体AとBは衝突した。 ただし,速度 と加速度は右向きを正にとるものとす る。 有効数字2桁で答えよ。 速度 物体A 0- -4.0m- 図1 2 速 1 物体A 0 V [m/s] 物体B (1)時刻 t = 0 において, 物体Aに対 するBの相対速度はいくらか。 物体B 0 (2) 物体AがBに衝突するまでの物 体Aに対するBの相対加速度はいくらか。 (3) 物体AとBが衝突するまでの時間はいくらか。 0 1 2 経過時間[s] <t=0のとき> 図2 v-tグラフ A (静止) f[s]と同じである。s=uot + 1/2atより、 13.0m/s2 B 1.0m/s - x(m) (4) 物体AとBが衝突する直前の相対速度の大きさはいくらか。 -4.0 0 <弘前大 > はじめのBの位置をx=0[m] とし, 右向きを正とすると, はじめのAの 位置はx=4.0 〔m〕 になる。 (3)で求める時間は, 初速度をv1.0 [m/s], 加速度をa=3.0[m/s2] として, 変位s=4.0[m] となるまでの時間 d₁o 1 -4.0 = 1.0.++ ( (-3.0) t2 2 相対速度 (3t+4) (t-2)=0 これより=-1/3.2 t= 運動している観測者から見た物体の運動を相対運動という。 (解説) (I)「Aに対するBの相対速度」とは, 「Aから見たBの速度」 すなわち「Aと一緒に運動する観測者から見たBの速度」のことである。 公式 (Aに対するBの相対速度)= (Bの速度)(Aの速度) ww Aが基準 wwwwwww 基準を引く 図2のv-tグラフより 時刻t=0において, Aの速度はv=0[m/s], B の速度はv=1.0 [m/s] である。 よって, 求める相対速度 VAB [m/s] は, VAB=UB-VA=1.0-0=1.0[m/s] (2)速度と同じく, 加速度も相対加速度を考えることができる。 この式 (tについての2次方程式) を解くと, t>0なので,t=2= 2.0[s] を選べばよい。 (4) 衝突する直前の相対速度vAB 〔m/s] は,v=vo + atより よって, VAB'=-5.0[m/s] 求める相対速度の 「大きさ」 は, 5.0m/sである。 UAB′ = 1.0+(-3.0) 2.0 (1) 1.0m/s (2)- -3.0m/s2 (3)2.0s (4)5.0m/s 1. 速度 加速度 11

回答募集中 回答数: 0
物理 高校生

解き方がほんとにわからないです

1. 電池の起電力と内部抵抗を調べるために、電池と可変抵抗を図のように 子 する。 はじめ可変抵抗の抵抗を最大にしておき、スイッチを入れ、 [EV[V]と 抗値を少しず [A]を測り、スイッチを切る。 つ小さくしながら同じ測定を繰り返す。 すると図9のような結果が得られた。 V(V) 15.0 10.0 5.0 図 A 0 1.0 2.0 3.0 I(A) 9 wwwwww 4 電池の起電力 E[V) と内部抵抗 (Ω)はそれぞれいくらか。 それぞれの解 群のうちから正しいものを……つずつ選べ。 E- 6 5 の解答群 ① 2.5 ② 5.0 7.5 ④ 10 ⑤ 12.5 15 6 の解答群 10 ② 2.5 5.0 ④ 6.0 ⑤ 10 5 可変抵抗で消費される電力」 P(W) は端子電圧の関数としてどう表され るか。 次の①~④のうちから正しいものを一つ選べ。 0 + V₂ 7 © (E-V)V Ⓒ + Ev +-v 6 電力Pが最大になるのは端子電圧がいくらのときか。次の①~④のう ちから正しいものを一つ選べ。 V= 8 1 0 ④ E 2. 追加 問2抵抗値が R の抵抗二つと起電力がEの電池二つを, 図2の回路(a), (b)の ように接続する。 それぞれの回路で電流計を流れる電流の大きさを1. Iv とするとき, I In の大小関係として正しいものを、下の①~⑩のうち から一つ選べ。 2 EL Iold 抵抗一つを 電池一つに つないだとき の電流とする。 (b) (a) 図2 ①=v=Lo 21<<1 1=1<1 ⑤1<<1 ⑥1=1<1 ⑦ ⑧1.<<I 1<I<h 1<1-1

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 1
物理 高校生

物理の質問です。 参考書のドップラー効果の公式の導出で分からない所があります。添付した画像が参考書の説明です。 c-v_s=f₀λ' (λ'=c-v_s/f₀) とありますがこれは波の進む速さの式と捉えることも出来ますよね。つまり、この式は振動数がf₀で、波長がλ'の波... 続きを読む

332 Chapter 13 ドップラー効果 13-2 音源が動くドップラー効果 13-2 音源が動くドップラー効果 静止した音源が音を発した1秒後 c(m) ココをおさえよう! 振動数」 ボクが最後尾 振動数∫の音源が,速さで近づくときに観測される振動数fは f=- 遠ざかる場合はf=cfusio ここでは,音源が動く場合のドップラー効果 (救急車の例) について考えます。 音源が発する音の振動数をfo [Hz] とします。 US このとき,音源は1秒間にf個の "波くん” を生み出しますね。 まずは音源が止まっている状態で,音を鳴らしている状況を考えましょう。 音速をc [m/s] とします。 音速というのは波の速さのことですから, 1秒間を切り取ると, 最初に発された“波くん"はc [m] 進み, 1秒後には音源からc〔m〕 までの間に fo個の“波くん”がいることになります。 速さ [m/s]で走る音源が音を発した1秒後 c-u (m) 振動数 速さい ボクが最後尾 先頭のボクは 目の速さは だからね 先頭のボクは スリムに なっちゃった 3 ということは、“波くん”1個分の幅は,入=〔m] と表すことができますね。 fo 今度は音源が速さで走りながら, 音を発しているとします。 1秒間を切り取ると, 最初に発された波くんはc 〔m〕 進みます。 同じ個の 1 “波くん”が ギュッと認められた んじゃ 静止の場合 c=foλ www fo 1秒後に。個目の”波くん” を発し終わるまでに,音源は距離 vs だけ動くので, c-vsの間に, fo個の“波くん”がいることになりますよね。 〔m〕に個の“波くん” fo 音源が走る場合 〔ml〕に個の“く” 補足 音の速さ [m/s] は音源の速さに関係ない。 →空気をベルトコンベアー、音を荷物と考えるとよい。 ダダダダ よいしょう このとき波くん1個分の幅, すなわち波長は入となって短くなります。 fo 止まって発した音と、走りながら発した音では、波長が変わってしまいました。 この波長の違いが音の高低の違いの原因になるのです。 続きはp.334で説明しま す。 ここで疑問に思っている人もいるかもしれないので補足です。 音源がで走りながら発されても、音の速さ とはならずにcのままです。 (先頭の“波くん"はc [m] しか進んでいませんね) これは、音が空気の振動なので 速さで 空気に伝わった瞬間に音源の影響を受けなくなるためです。 空気を速さのベルトコンベアー 音を荷物に例えるとわかりやすいですよ。 止まってベルトコンベアーに荷物を乗せても、走りながらベルトコンベアーに 荷物を乗せても荷物の進む速さは同じになりますね。 そんなイメージです。 走って乗せても、止まって乗せても 速さ c[m/s] ← 手をはなせば、物は同じ速さで進む

未解決 回答数: 0
物理 高校生

(2)どうしてma=μ’mg-kxになるのですか? ma=kx-μ’mgではダメなのですか?

実戦 基礎問 31 粗い水平面上の単振動 図のように、摩擦のある水平な床の上に質量m の小物体Aを置き, 自然長Lの軽いばねの一端を取 り付ける。 ばねの他端はばねが水平となるように壁 平右向きに軸をとる。 小物体Aを位置 x=xo (0<x<L) で静かに た。 小物体Aはx軸負の向きに動き出し, Aを放した時刻を0とすると、 に固定する。 また, ばねが自然長のときの小物体Aの位置をx=0とし、 まで達したところで運動の向きが反転し まで達したところで 刻t=t に位置 x=x1 の向きに運動を始め, 時刻 t=t に位置 r=I2 た。ばねのばね定数をた。重力加速度の大きさを、床と小物体の 止摩擦係数をμ,動摩擦係数をμ'として, 以下の問いに答えよ。 (1) 静かに放したときに小物体Aが動き出すための x の条件を求めよ。 (2)位置および時刻を求めよ。 (2) 位置におい 小物体Aの加速 m よって, α- これより 小 単振動 (の一 また、xo か (3) 単振動の (3) 時刻 t=0 から t=tの間で, 小物体Aの速さの最大値を求めよ。 (4) 小物体 (4) 位置 2 を求めよ。 4月 EE 講 Aの加速 (大阪府大 ●粗い床上の単振動 粗い床上を単振動する物体に働く動 力は、往路と復路で向きが逆向きとなり,単振動の中心が る。このことから,運動方程式をそれぞれの場合について立てて考える がある。 ●着眼点 1. 粗い床上の単振動 よって, (2) 中心は [別解] 往路復路でそれぞれ運動方程式を立てる。 でき 2. 弾性力の他に動摩擦力など一定の力が働く単振動 鉛直ばね振り子と同様に考える。(→参照p.62) 3.動摩擦力 (非保存力)が働いていても単振動の力学的エネルギー保 法則を用いることができる。 (→参照 p.68) 解説 (1) 小物体が動き出すためには, ばねの力の大きさkoが最大学 力の大きさμmgを越えていればよいから, す Xo kxo>μmg よって、 > μmg k

未解決 回答数: 1
物理 高校生

交流発電機の原理 交流発電機が回転し続けるために加える外力の仕事率が抵抗での消費電力と保存するのは何故なのでしょうか? 誘導起電力は仕事はしないのですか?教えてください。

7/1029 7/29 10 交流発電機の原理 電磁誘導の骨格、出題 次の文中の空欄 ①〜13を埋めよ。 ただし①と⑧はイロのどちらかを その他は数式で記入せよ。文中の物理量は MKSA単位系で表す。 }の中から選び、 交流発電機の原理を考えてみよう。 図のように一様な磁界 (磁束密度B) の中に面積Sの 長方形 abcdの一巻きコイルを置き, 磁界に直交する軸のまわりに一定の角速度で回転さ せる。 コイルを貫く磁束のは周期的に変化する。 コイルがabを上にし,その作る面が磁界の 向きに垂直なときに時刻を0とし,かつこのときに磁界が面abcdを貫いている向きを破 束が正となる面の向きとすれば,=)となる。時間⊿tの間における磁束の変化 とするとき、コイルに生じる誘導起電力は, cd a b向きを電流の正の向きと LT, V=1 )/4t=30 であり、コイルの両端 pq に抵抗Rを接続して回路を形成 すると,図の状態で電流は (イ)ab, (ロb→a} の方向に流れる。 コイルの抵抗が無視でき るとすると、このときの電流I )であり,抵抗で消費される電力Pは,P ) となる。 次に回路を流れる電流が磁界から受ける力とコイルの回転に要する仕事を考えよう。 図の ように磁界の向きを方向, 磁界とコイルの回転軸に垂直な方向を方向, 座標原点を回転 軸にとる。 図の状態で,コイルの一部ab (長さ)が磁界から受ける力の大きさは電流Iを用 いて (ロ)下向き}となる。一方,図のコ であり,その方向は方向を{(イ)上向き, イルの回転からaまでの長さをとし, コイルの一部abの位置をx-y座標で表すと (土,日)=(8), }, またその速度は(フェ, by) = (),( たがってコイルの一部 ab が磁界から受ける力にさからって等速回転するために必要な仕事 )} となる。 し は単位時間あたりP=)となる。コイルの一部cdについても上と同様の議論がで またad, bcで受ける力はのまわりの回転運動を生じさせない。したがってコイル全 体で必要な仕事は単位時間あたり 2P' となり, 式を整理すれば電力Pと一致することがわか る。 N 4 d T a R B b B ◎電磁誘導 B ◎電磁誘導 亜(t) 閉曲線 IV ↓ C ~ ・回路程式 の向きを設定 I -(右手系) → の学 Vem (~ファラデー・ノイマンの法則) PR(t) = Pex(t) エネルギー保存 -46-

回答募集中 回答数: 0
1/35