学年

教科

質問の種類

物理 高校生

なぜ引き合うとしているのですか。逆で考えた場合符号が違い答えが間違ってしまいます。

53.くたてばねによる単振動〉 図のように、なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に, 同じ質量mの穴の開いた小さ い物体A,Bを通した。 物体Aには, ばね定数んの軽いばねをつけ, ばねの他端は棒のO端に固定した。ばねは OP 方向のみに伸縮し,棒 と物体A,Bの間に摩擦はないものとする。さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 x=0- 物体B 接着剤 物体A A,Bが押しあうときは物体AとBは離れないが,引きあうときは引きあう力の大きさが接 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに,ばねはその自然の長さからd だけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, k, g を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2)この振動の周期を,m, k を用いて表せ。 (3)この振動をしているときの物体A, B の速さの最大値を,m, k, bを用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり,Tが 正のときは物体AとBは引きあっているが,Tが負のときは押しあっていることになる。 (4)このとき, 物体Bにはたらく力を, m, g, Tを用いて表せ。 x 軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体A, B の運動方程式を考えることで, Tを,m, k, g,x を用いて表せ。 図 (6) Tをxの関数として, -3d≦x≦ とする。 の範囲でグラフに描け。 ただし, ここではb>3d 次に,接着剤の接着力が小さく, 物体 A, B間の引きあう力の大きさが mg 以上になると, 物体AとBは離れる場合を考える。ただし,離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 物体Bをつりあいの位置から6だけ押し下げ,静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7)運動の途中で物体Bが物体Aから離れるためには,bはある値 6 以上でなければならな い。 bı を,m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを,m,k,g. 6 を用いて表せ。

回答募集中 回答数: 0
物理 高校生

⑷の解き方がわかりません💦 教えてくださいお願いします🙇

必解 44. 〈摩擦のある回転台上の物体> 水平面で回転できる回転台があって,回転台水平面上の回転中心を点とする。質量m 〔kg〕 で大きさの無視できる物体Aを,回転台上で点からlo 〔m〕 の点Pに置く。 物体と回転台の間の静止摩擦係数をμ 重力加速度の大きさをg 〔m/s2〕 として、次の問い 答え (1) 回転台が回転していないとき,Aにはたらいている力を図によって示せ。 (2) 回転台を角速度 ω [rad/s] で回転させる。 Aが点Pですべらないで回転台とともに回転 しているとき,Aにはたらいている力を, 回転台上でともに回転しながら観測するときと 回転台の外で観測するときとで,それぞれどういう力が観測されるか, 図によって示せ。 (3) 前問(2)の状態からωを徐々に上げていったら, w=wo [rad/s] でAが点Pからすべりだ した。μをlo,g, wo を使って表せ。 (4) 長さ 〔m〕のつる巻き状のばねがあって、これにAをつるすと長さが1〔m〕に伸びる。 ばねの一端を点0につけ、他端にAをつけて回転台に置いた。 ばねの長さが〔m〕に伸び ているとき,Aが回転台上をすべらないで回転できるの大きさの範囲を答えよ。μは1 より小さく, ばねと回転台の摩擦はないものとし、また、ばねの質量は無視できるものと する。 [ 福島県医大 〕

回答募集中 回答数: 0
物理 高校生

コンデンサーの問題で電極が挟まると全く理解不能になります。これらの問題の解説お願いします🙏

7 コンデンサー回路と電気力線 図1のように,起電力 Vの電池につながれた 面積 S の平行極板 A, B を間隔 3dで真空中に 置く。 B は接地 (=電位の基準とする) してお り,極板は十分大きく,極板間の電場は一様と 考えてよい。はじめにスイッチ S を閉じ,平 S,\ 行極板 A, B からなるコンデンサーを充電させ た後, Aから距離dのところに極板 A と同じ 電気量を帯びた金属板Cを平行に挿入した。 金 属板Cの面積は極板 A, B と同じでその厚さは十分小さいものとし、 真空の誘電率を " とする。 図 1 (1) 極板 A, C間の電場及び極板 B, C間の電場はそれぞれいくらか。 (2) この回路において, 極板 A,B,Cの位置の電位はいくらか。 (3) スイッチ S を閉じたあと, 極板 Aに蓄えられている電気量はいく らか。 (4) スイッチ S を閉じたまま, 極板Cを極板Bに近づけていくと,極 板Aに蓄えられる電気量は増える, 減る, 変わらない}のどれか。 る。 また電圧V=Vの電源を図の向きに設 3 3 AC B 次に,図2に示す回路において,極板 A, C, からなるコンデンサー (コンデンサー AC), 極板 C2, B からなるコンデンサー (コンデン サー C2B)は,それぞれ間隔d, 2d で, 図 1 のコンデンサーと同様に面積Sの極板からな S2 d S3 d 2d A C₁ C2 B 2 A P 置する。 (5) 全ての極板に電荷がない状態でスイッチ S3 を閉じたあと, 極板 B に蓄えられる電 気量はいくらか。 (6) (5) に続いてスイッチ S3 を開いてからスイッチ S2 を閉じたあと, 極板 B に蓄えられる電気量はいくらか。 (7) (6) のとき、図2の点Pの電位はいくらか。 2d 図2

回答募集中 回答数: 0
物理 高校生

コンデンサーの問題です。 問2が理解できません。解説お願いします。

が電場 1 追試 本試 30 ㊙ 132. 平行板コンデンサー 4分 Vo を加えた。次に,帯電していない厚さdの金属板を、図2のように極板間の中央に,極板と平行と 図1のように、極板間の距離が3dの平行板コンデンサーに電圧 なるように挿入した。極板と金属板の面は同じ大きさ同じ形である。 また,図1および図2のように, 左の極板からの距離をxとする。図中には,両極板の中心を結ぶ線分を破線で,x=d および x=2dの 位置を点線で示した。 Vo 0 V Vo d d 問1 図1および図2において, 十分長い時間が経過した後の, 両極板の中心を結ぶ線分上の電位V とxの関係を表す最も適当なグラフを、次の①~⑥のうちから1つずつ選べ。 ただし, 同じものを くり返し選んでもよい。 図 1: ア 図2: 2d T 2 0 2d d 2d 3dx +H Vo 図 1 イ 3d x 3dx (2) Vo 2 3 0 V4 Vo 0 いものを、次の①~⑦のうちから1つ選べ。 41 ① 04/1 9 d I d ⑤ 2d 3 2 1 2d 3d 3d x 金属板 0 d 2d 3dx ⑥ 2 Vo 図2 Vo ⑦ 55 9 4 Vo 問2 十分長い時間が経過した後の, 図1のコンデンサーに蓄えられたエネルギーをU, 図2の金属 板が挿入されたコンデンサーに蓄えられたエネルギーをUとする。エネルギーの比 として正し d 1 d 2d 2d 3dx 3dx [2017 本試] 第4編 第9章 電場 101 電気と磁気

回答募集中 回答数: 0
物理 高校生

この問題の4だけお願いします 答え,-T-mg

せ。 , 2 。 [北海道大〕 54. くたてばねによる単振動〉 図のように, なめらかで十分長い直線状の棒 OP を鉛直に立てて 端を水平な床に固定した。 この棒に,同じ質量mの穴の開いた小さ い物体A, B を通した。 物体Aには, ばね定数kの軽いばねをつけ, ばねの他端は棒の端に固定した。 ばねは OP 方向のみに伸縮し, 棒 と物体A,Bの間に摩擦はないものとする。 さらに, 物体Aのばねと は反対側に質量と厚さの無視できる接着剤で物体Bを接着した。 物体 A,Bが押しあうときは物体AとBは離れないが, 引きあうときは引きあう力の大きさが接 床 x=0+ P Telle [00000] 物体B -接着剤 ・物体 A 着剤の接着力以上になると物体AとBは離れる。重力加速度の大きさをgとする。 初めに, ばねはその自然の長さからdだけ縮んで, 物体 A, B はつりあいの位置に静止し ていた。 図のように,このつりあいの位置を x=0 とし,鉛直上向きを正とするx軸をとる。 (1) 自然の長さからのばねの縮みd を,m, kg を用いて表せ。 まず, 接着剤の接着力が十分大きく, 物体AとBが離れない場合を考える。 物体Bをつりあ いの位置から6だけ押し下げ, 静かに手をはなすと, 物体AとBは一体のまま上下に振動した。 (2) この振動の周期を, m, kを用いて表せ。 (3) この振動をしているときの物体A, B の速さの最大値を, m, k, b を用いて表せ。 物体AとBが一体のまま運動しているときの両物体の位置の座標をxとする。 また,物体 Aが物体Bから受ける力をTとし, x軸の正の向きをTの正の向きとする。 つまり, Tが 正のときは物体AとBは引きあっているが, Tが負のときは押しあっていることになる。 (4) このとき, 物体Bにはたらく力を, m, g, T を用いて表せ。 x軸の正の向きを物体Bには たらく力の正の向きとすること。 (5) 物体 A, B の運動方程式を考えることで,Tを, m, k, g, x を用いて表せ。 020 (6) T をxの関数として, -3d≦x≦3d の範囲でグラフに描け。 ただし, ここでは6>3d とする。 次に, 接着剤の接着力が小さく, 物体A,B間の引きあう力の大きさがmg以上になると, 物体AとBは離れる場合を考える。 ただし, 離れる瞬間の前後で,物体AとBの運動エネル ギーや, ばねの弾性エネルギーは変化しないものとする。 2246 物体Bをつりあいの位置から6だけ押し下げ, 静かに手をはなすと, 物体Bは運動の途中 で物体Aから離れた。 (7) 運動の途中で物体Bが物体Aから離れるためには,bはある値6 以上でなければならな い。 bı を, m, k, g を用いて表せ。 (8) 物体Bが物体Aから離れた瞬間の物体Bの速さを, m, k, g, b を用いて表せ。 [22 千葉大 ]

回答募集中 回答数: 0
1/13