学年

教科

質問の種類

物理 高校生

⑶の問題でなんでマーカーの部分の式をかけるのか教えてほしいです!!!

し 秒 [15] 【センターより】 音波に関する次の文章を読み、下の問い ((1)~(3)) に答えよ。 音のドップラー効果について考える。 音源、観測者。 反射板はすべて一直線上に位置し ているものとし、空気中の音の速さはVとする。また、風は吹いていないものとする。 (1)次の文章中の空アイに入れる語句と式の組合せとして最も適当なもの を,下の①~④のうちから1つ選べ。 図1のように、静止している振動数の音源へ向かって、観測者が速さで移動 している。このとき、観測者に聞こえる音の振動数はア音源から観測者へ向か う音波の波長はイである。 音源 ア ①よりも小さく ②よりも小さく イ V-v fi V チェ V2 よりも小さく J (V+v)fi V-v ④ と等しく fi V @ と等しく V2 と等しく (V+v)fi V-v 0よりも大きく f₁ V よりも大きく f₁ V2 よりも大きく 観測者 (V+v)fi (2) 図2のように, 静止している観測者へ向かって, 振動数の音源が速さで移動 している。 音源から観測者へ向かう音波の波長を表す式として正しいものを、下の ①~⑤のうちから1つ選べ。 =2 ① √2 観測者 図 2 V-v [③] V+v V² ④ (V-v\/ 音源 f2 V² (V+0)f2 (3) 図3のように, 静止している振動数の音源へ向かって, 反射板を速さで動か した。 音源の背後で静止している観測者は, 反射板で反射した音を聞いた。 その音の 振動数はf であった。 反射板の速さを表す式として正しいものを,下の①~⑧ のうちから1つ選べ。 3 観測者 音源 反射板 ① 113-114 ⑤ fs-fiy fath V 図 3 ② fatfav③ チューナ ⑥ fs ④ h-hy チュ 近

未解決 回答数: 1
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0
物理 高校生

(3)の問題 質量数とアボガドロ数を用いた計算のしかたがわかりません 僕のノートのように計算しては行けないのですか?

反応の前後で減少した量を GM とすると、 JM (反応) - 反応後の質量) AM= (26.9744+1,0087) -(23.9849+4.0015) =-3.3×10 u (2) (1) JMが負となったので、反応後の質量 leV=1.60×10-19Jなので, 4.92×10-13 1.60×10-19 指針 反応前後での質量の減少を⊿M とす ると, 4M2 のエネルギーが放出される。 (3) では, Uの原子数を求め, エネルギーを計算する。 (1) 反応前の質量の和は, 234.9935+1.0087=236.0022u 反応後の質量の和は, 139.8918+92.8930+3×1.0087=235.8109u =3.07 x 10°eV=3.07MeV 3.1 MeV のエネルギーが吸収された。 基本例題88 ウランの核分裂 ウランの原子核に中性子 in が衝突し, 次のような核分裂がおこった。 U÷n →→→→ ¹8Xe+Sr+3n 表には、各原子核と中性子の質量を示す。 1u=1.66×10-27kg, 真空中の光速を3.00×10°m/s, アボガドロ定数を6.02×1023/mol とする。 質量の減少は 236.0022-235.8109-0.1913 u (2) 反応によって減少した質量をkg に換算する。 AM = 0.1913×(1.66×10-27) = 3.175×10-28kg 基本問題 606,607,608,609 in 38Sr 1404 (1) この反応における質量の減少は何uか。 (2) Uの原子核1個あたりから放出されるエネルギーは何Jか。 (3) 1.00gのUがすべて核分裂をしたとき, 放出されるエネルギーは何Jか。 1.00 235 235T 1.0087 u 92.8930u 139.8918u 234.9935 u 放出されたエネルギーEは,E=⊿Mc² から . E=3.175×10-28 × ( 300×108) 2 = 2.857×10- ….. ① 2.86×10-1J (3) 1.00gの25Uの原子数は、質量数が235 な ので, x (6.02×1023) = 2.561×1021 求めるエネルギーE' は, ①の値から. E'=(2,857×10-1)×(2.561×1021) =7.316×10¹0 J 7.32×10¹0 J

回答募集中 回答数: 0
1/7