学年

教科

質問の種類

物理 高校生

なぜこれは電位が急に足し算をし出すんですか? 意味がわかりません。位置エネルギーなら2dの点だけでいいじゃないですか。何やってんですかこれって。 図で教えてくれると助かります。

09316 T〔N〕と 。 り、 7 320 だけ離 ニ運ぶ →B /m 低いから 1773年にキャヴェンディッシュが発見していた。 電気力線と等電位線 物理 例題 69 の点電荷がある。 クーロンの法則の比例定数をko とし,重力の影響は考えない。 真空中で, x軸上の原点に電気量4gの正の点電荷, x=dの位置に電気量4の正 (1) 軸を含む平面内の電気力線の様子を表す図として最も適当なものを下の① ~④の中から選べ。 ただし, 図中の左の黒点は、軸の原点、右の黒点はx=dの 位置を示す。 なお, 図では電気力線の向きを表す矢印は省略してある。また, 等 ■位線を表す図として最も適当なものを, ①~④の中から選べ。 Q (2) x軸上で電界が0になる点はどこか。 0- xxx 1-X 1-43 3 質量(m,正の電気量 Qをもつ荷電粒子をx軸上のæ=2dの点に静かに置いた。 の電荷がx軸上の無限遠点に行ったときの速さを求めよ。 ① センサー 101 電気力線 ①接線が電界の方向 ②密→電界が強い 疎→電界が弱い ③正電荷(無限遠) から 負電荷 (無限遠) ヘ ④等電位面と直交 ⑤ Qから出る電気力線の 本数N=4kQ N ⑥E= andal S (SE に垂直な面積) 等電位線 地図の等高線に対応 正電荷→山の頂上 負電荷→海底の谷底 りになる点あいる センサー102 センサー 103 真空中の荷電粒子の運動 ~mv²+qV=- 2 (重力を考えない場合) Furk 解答 (1) この場合、電気力線は正電荷から出て無限港に行く。 *********** ------- 本数は電気量に比例する。 答えは④ 実際は三次元なので,この平面内の本数が電気量に比例すると は限らない。 等電位線は地図の等高線に対応する。 電気量の絶対値が大き いほど等電位線は密になる。 答えは ② (2) 世界の強さは+1Cの電荷が受ける力である。電界がOK なる点の座標をx(0<x<d) とすると、クーロンの法則よ り ko v=kx²² 4g×1 2² = ko g×1 (d-x)² これより (3-2d) (x-2d) = 0 V=ko エネルギー保存 mx02- 4q 9 + ko (2d-d) 2d ▶309 316 x=2dの点では電界の向きが同じなので不適。 ( 3 無限遠点を電位の基準とすると, x=2dの点の電位Vは, 3koq ....... (1) d +|QV|=| ①②より, v= GK Fr Bxx cd) mu²+Qx0 6koqQ md 2 ゆえに, x= d 3 物理 基礎 物理 24 電界と電位 197

回答募集中 回答数: 0
物理 高校生

この問題の解説で、赤線で囲ってあるところの考え方(なぜこういう計算になったのか)がよく分かりません。 教えて下さい。

8 必修 基礎問 v-tグラフ x軸上を運動する物体Aを考える。 物体A は原点O(x=0[m]) の位置にあり, 時刻 t=0 [s] に動き始め, 時刻 t=8 [s] で停止 した。 右図は物体Aの速度と時刻 tの関係 を表すグラフである。 このとき, 以下の問い に答えよ。 ただし,x軸の正の向きに動くと きの速度を正とする。 間 1時刻 t=5 〔s〕までの物体Aの加速度α 〔m/s2〕 と時刻 tの関係を表 すグラフは,次のどれか。 正しいものを1つ選べ。 (1) (1) ② ③ a [m/s2] 2 6 4 2 0 a [m/s] 345 ++t[s] a [m/s²) 6 4 2 0 12 a [m/s²) 2 1 ++-t[s]. 0 345 2 0 v [m/s] 3 2 1 0 -1 -2 12 345 Airit[s] 2 3 12 12 (2) である。 問2 原点から最も離れた物体Aの位置のx座標は X 間3 時刻 t=5 [s] までの物体Aの位置 〔m〕と時刻t [s] の関係を表す グラフは次のうちどれか。 正しいものを1つ選べ。 (3) x〔m〕 ② x[m〕 ② x[m] 3 x[m] 4 1 12345 4 時刻 t=8 [s] における物体Aのx座標は (4) のりは (5) である。 6 to 2 0 物理基礎 6/7/8 *t[s] (4) 345 riit〔s] 12345 〔6〕 12345[s] 12345 ●v-tグラフ 速度 (ベクトル) の時間変化を表す。 で,これまでの道 (龍谷大改) 精 ●着眼点 1. グラフにおける正の速度の向きが,加速度, 変位の正の向きであ る。 (加速度の向き) (グラフの傾きの符号) 2.v=0 となる位置は、速度の向きが変わる位置 (折り返し点)である。 着眼点 1. 変位は, グラフとt軸が囲む正と負の面積の和である。 2. 道のりは,面積の絶対値の和である。

回答募集中 回答数: 0
1/4