学年

教科

質問の種類

物理 高校生

オームの法則の導出のところで、最後にRを逆数で置かなきゃ成り立たないことは分かるのですが、どうして逆数としてRを置くのか教えて頂きたいです。

第4編 電気と磁気 抗に電流が流れていないときには電圧降 下はOVであり,抵抗の両端は等電位で ②電圧降下 抵抗 R[Ω] の導体に電流 I[A] が流れると, オームの法則により, 抵抗の両端の間で RI[V]だけ電位が下が る。これを電圧降下という(図42)。抵 voltage drop 電位 受けているとすると,この抵抗力と電場から受ける力のつりあいより 電圧 e V = kv 降下 (34) 低 RI[V] eV この式よりv= kl となるので,これを (33) 式に代入すると 抵抗 R [Ω] 位置 eV I = en X xS= kl e²nS V kl (35) 電流 [A] I=enus 休 と表される(図43)。 (33) 復習 問21 断面積 1.0×10 m² の導線に 1.7A の電 流が流れているとき, 自由電子の平均 移動速度v [m/s] を求めよ。 導線1.0m² 当たりの自由電子の数を 8.5×1028/m3, 電子の電気量を-1.6 × 10-19 C とする。 ② オームの法則の意味 図44のように, 長さ[m], 断面積 S[m²] の導体の両端 に電圧 V[V] を加えると, 導体内部に E = ¥ [V/m] の電場が生じる。導体中の 自由電子はこの電場から大きさe ¥ [N] の力を受けて、陽イオンと衝突しながら 進むが,自由電子全体を平均すると一定 の速さ [m/s]で進むようになる。 この とき,自由電子は陽イオンから速さ”に 比例した抵抗力ku [N] (k は比例定数) を 258 第4編 第2章 電流 自由電子全体を平均したもの 速さ 電場E= 陽イオン 静電気力 e 抵抗力 P222 陽イオン S〔m²] ある。 C オームの法則の意味 電子の運動と電流 断面積 S[m²]の導 体中を自由電子(電気量-e [C]) が移動す る速さを v[m/s], 単位体積当たりの自 由電子の数を n [1/m] とすると, 電流 の大きさI[A] は 図43 電子の運動と電流図の 断面 A を t[s] 間に通過する自由電 子は,断面Aの後方 長さ of [m] の円柱部分に存在していたと考え られる。 ●の円柱内の自由電子の 数は 何個分 体積 N=nx (ut XS)= nutS であり,合計の電気量の大きさは Q=exN=envtS である。 これと (31) 式 (p.256) より envtS t 図 42 電圧降下 これは,オームの法則を表している。 ここで kl R= (36) Op.257 オームの法則 e²nS V 1= (32) R 百由電子 とおくと I = が得られる。 V 断面積 S R vt D抵抗率 k ロー ①抵抗率 (36) 式において, e²n をp とおくと,抵抗R [Ω] は次のよう 10 に表すことができる。 映像 Link Web サイト 抵抗率 R=p (37) 抵抗 2R S 長さ2倍にすると R[Ω] 抵抗 (resistance) [m] 抵抗率 I=- t = envS 15 〔m〕 抵抗の長さ (length) S〔m²] 抵抗の断面積 抵抗 R S 断面積2倍にすると -1〔m〕 V[V] 図44 オームの法則の意味 比例定数は,注目する物質の材 質や温度によって決まる。これを抵 2S- 抗率(または電気抵抗率, 比抵抗) といい, resistivity 単位はオームメートル(記号 Ω·m) で ある。 抵抗 1/2 ①図 45 長さ 断面積の異なる抵抗 問22 断面積が2.0×10-7m² 抵抗率が1.1×10Ω・mのニクロム線を用いて, 1.0Ω の抵抗をつくりたい。 ニクロム線の長さを何mにすればよいか。 [Link 259 復習

解決済み 回答数: 1
物理 高校生

青い所で物理では分数はダメなのでしょうか?解説お願いします🙇‍♂️

チェック問題1 等加速度運動の「3点セット」 第5分 次の等加速度運動の 「3点セット」 初期位置 x, 初速度 Vo, 加速度αを表にせよ。 さらに, 時刻 t での速度vと座標を, tを使って表せ。 (1) (2) t=0s 4m/s2 3m/s t=0s 10m/s t=2s 4m/s 軸 軸 x〔m〕 x(m) 2m 0m Step 3 初期位置 Xo 0m 初速度 ひ 10m/s 加速度 α -3m/s2 [公式] より v=10+(-3)t=10-3 t...... 答 [公式]より 2 1 x=0+10t+m×(-3)t2 =10t-1.5t2...... 答 は座標だよ! 移動距離じゃな いからね。 解 説 (1) 《等加速度運動の解法〉 (p.21)で解く。 Step 1 軸はすでに立っている。 (2) Step 2 与えられた図より, 「3点セット」 の表は, 初期位置 Co 2m 初速度 ひ 3m/s 加速度α 4m/s2 Step 3 [公式] (p.17) より, v=3+4t・・・・・・答 [公式] (p.18) より x=2+3t+1/2 x4t2 =2+3t+2t2. 箸 は座標だよ! 移動距離じゃな いからね。 さあ、次の問題で等加速度運動の総まとめをしよう。 Step 1 軸はすでに立っている。 Step2 加速度だけ不明なので, 求める必要がある。 加速度αとは, 1秒あたりの速度の変化なので. (4-10) m/s変化 a= 2秒間で -=-3m/s2 つまり,αは負で減速運動となっている。 以上より, 「3点セット」の表は, いつも座標を意識 している人は物理 が得意になれるよ 22 物理基礎の力学 第2章 等加速度運動 23

解決済み 回答数: 1
物理 高校生

熱力学の問題です。最後の問題の言ってることは分かるのですが、圧力一定と考えるならシャルルの法則でも良くないですか?そうするとべつのこたえがてできます

容器内に閉じ込められた理想気体の膨張収縮について,以下の問に答えよ。ただ し、気体定数はRとし、単原子分子気体の定積モル比熱はCv=2R で与えられる。 理想気体の断熱膨張を気体分子の運動の観点から考察してみよう。図1のように、 理想気体が断面積Sの円筒状のピストン付き容器に封入されている。 気体が封入さ れている部分の長さは、ピストンをx軸方向に速度 uで動かすことで,変えること ができる。気体は単原子分子 N 個からなり,各気体分子は質量mの質点とみなすこ とができる。ただし、重力の影響は無視する。また,容器の壁面やピストンは断熱材 でできており、表面はなめらかである。 このとき, 以下の問に答えよ。 ピストン 断面積 S V y m V u X 長さ l 図 1 (a) ピストンが静止している状況 (u = 0) を考える。そのときに, 容器内部の気体 と壁面やピストンとの間に熱のやりとりのない状態のことを,以下では断熱状態と 呼ぶ。 このような断熱状態にあるためには, 気体分子とピストンとの衝突は弾性衝 突である必要がある。 なぜ非弾性衝突では断熱状態とみなすことができないかを説 明する以下の文の空欄(ア)~(キ)に当てはまる数式または語句を答えよ。 ただし,空欄 (ア)~(エ)に対しては数式を解答し,空欄(オ)〜(キ)に対しては選択肢の中から最も適切な 語句を選択のうえ,選択肢の番号で解答すること。 解答欄には答のみを記入せよ。 空欄(オ)に対する解答の選択肢: ① 物質量 ② 内部エネルギー 空欄(カ)(キ)に対する解答の選択肢: 3 熱量 ① 与えられた熱量 ② された仕事 ③ 与えられた物質量 質量 m,速度(by) の分子がピストンと非弾性衝突をする際のはねかえ

解決済み 回答数: 1
1/4