学年

教科

質問の種類

物理 高校生

(1)についておしえてください。 まずv=atは初速度が0だからV=V0+ atからV0をないものとしてるということですか? そして7秒から9秒の部分を解説のV=atで計算すると−8になっているけどなぜグラフは0になるんですか?

14 第1章 物体の運動 発展例題 5 等加速度直線運動のグラフ x軸上を運動する物体が時刻t=0s に原点 0 から動き出し, その後の加速度 α 〔m/s2] が図の ように変化した。 x軸の正の向きを速度 加速度 の正の向きとする。 α [m/s2] 2.0 7.0 9.0 0 4.0 t(s) (1)物体の速度v [m/s] と時刻t[s] の関係を表す -4.0 グラフをかけ。 (2)物体の位置 x [m] と時刻t[s]の関係を表すグラフをかけ。 考え方 (2) x-tグラフの形は,αの符号によって変わる。 ・α< 0:上に凸の放物線 ・a>0:下に凸の放物線 ・α=0:傾きぃの直線 (等速直線運動) 解答 (1) t=4.0s での速度v [m/s] は,(1) 補足 v=at=2.0×4.0=8.0m/s v↑ [m/s] (加速度)=(v-tグラフの傾き)から, 18.0 v-tグラフは右の図。 (2)(移動距離) (v-tグラフの面積) から位置 x[m〕を求めると ・t=4.0s:x= 1/2×4.0×8.0=16m ・t=7.0s:x=16+3.0×8.0=40m 0+1/2×2 ・t=9.0s:x=40+ -x2.0x8.0=48 m t(s) 4.07.09.0 XA x=vot+ +at² (vo>0) のグラフはαの正負に よって、次のようになる。 ・a> 傾き ひ x (2) 傾き No x4〔m〕 48 また, x-tグラフの形は, 40 • a≤0 ・t=0~4.0s :下に凸の放物線 x 16 傾き Do 傾き v ・t=4.0~7.0s 傾き 8.0m/s の直線 t(s) 0 4.0 7.09.0 ・t=7.0~9.0s:上に凸の放物線 X である。 以上から, x-tグラフは右上の図。 ACCESS | 3| 発展問題 ・頻出重要 t

解決済み 回答数: 1
物理 高校生

2つ質問したいです。 ①左下の図のマーカー部分の力はなんの力なのか ②なぜこのようにして解けるのか どなたかよろしくお願いします<(_ _)>

cost 発展例題 7 M 力のつりあい 発展問題 81 M 重さ W〔N〕の人が, 重さ w〔N〕 の台の上にのり、図のように, 滑車を使って台といっしょに自分自身をもち上げようとしてい る。W>wとして,次の各問に答えよ。 M IN (1) 人がひもを大きさ T〔N〕の力で引くとき, 台が地面から 受ける垂直抗力の大きさNは何Nか。 W[N] M 地面 w[N] (2) 台が地面からはなれるには, Tを何Nよりも大きくすれ ばよいか。 W+w 指針 (1) 人がひもをT 〔N〕で引くと, 作 用反作用の法則から,人はひもから同じ大き さT [N]の力で引き返される。 人と台にはたら く力を描き, つりあいの式を立てる。 (2) 台が地面からはなれるとき, 垂直抗力Nが 0 になる。 ■解説 (1) 人と台がお よぼしあう力の 大きさをN' と すると,それぞ れ図のような力 を受ける T 東) N W w 人が受ける力 台が受ける力 人が受ける力のつりあいから, T+N'-W=0 また,台が受ける力のつりあいから, T+N-N'-w=0...② 式①、②の辺々を足しあわせると 2T+N-(W+w)=0 N=W+w-2T[N] (1) (5) (2)台が地面からはなれるとき, N = 0 となる。 (1)の結果を用いると, 0=W+w-2T T= W+w[N] 2 t

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

解説見てもよく分からないので教えてください

第3章 様々 発展例題 48 物体が転倒する条件 図のように、 あらい水平な床に, 高さα 幅 6 質量mの 一様な直方体の物体を置き、 この物体の右上の点を水平右向 b きに大きさの力で引く。 重力加速度の大きさをg とする。 an (1) 物体が静止しているとき, 床からの垂直抗力の作用点 と物体の右下の点Oとの距離を求めよ。 (2) F を徐々に大きくしていくと, ある値F。 をこえたとき, 物体は床の上を ることなく傾き始めた。 F を求めよ。 考え方 物体にはたらく力は, 引く力(水平右向き)垂直抗力N (鉛直上向き) ●重力 mg (鉛直下向き) ●静止摩擦力f(水平左向き)に図に mg a (1) 静止している⇒力のモーメントの和= 0 2) Fを徐々に大きくしていくと、垂直抗力の作用点はやがて点0に 一致する。ここからさらにFを大きくすると,物体は傾き始める。 ⇒F=F のとき, 垂直抗力の作用点は点0に一致 8. mg 20 作用 の > 解答 (1) 垂直抗力の作用点と点 0 との距離をxとすると,垂補足 直抗力の作用点のまわりの力のモーメントのつりあいから, 物体がすべり出 き始めるこ mg. •(1/2 - x) - F• a=0 £7, x=- b Fa ...1 始める直前の 2 mg 物体が傾き始める直前 (F=F。)において,垂直抗力の作用点 N(=μmg) 点0に一致するから, ① で x=0, F=F。 として, f(=Fo) が、 いことがわか b Foa 0= - 2 mg よって, Fo=2a bmg Fo ">. mg (μ: 青 ACCESS | 3| 発展問題 モーメントのつりあい BA

解決済み 回答数: 1
物理 高校生

RT0はP0V0と書いても丸になりますか?

24 0 ふる あ 発展例題28 Vグラフと熱効率 単原子分子からなる理想気体1mol をシリンダー内に密 閉し、図のように,圧力と体積VをA→B→C→D→Aの2 順に変化させた。 Aの絶対温度を To, 気体定数をRとする。 (1)この過程で気体がした仕事の和W'はいくらか。 発展問題 328 BC Do A D (2) AB, およびB→Cの過程で,気体が吸収した熱はそ 0 Vo 2V V 0 れぞれいくらか。 (3)この過程を熱機関とみなし, 有効数字を2桁として熱効率を求めよ。 指針 気体が外部と仕事のやりとりをする 過程は,体積に増減が生じたときであり,B→C, D→Aである。 なお,熱効率は,高温熱源から得 た熱に対する仕事の割合である。 Q1 は,定積モル比熱 「Cv=3R/2」 を用いて Q=nCvAT=1×122×(2T-T)=22RT 3 V B→Cは定圧変化である。 気体が吸収した熱量 TA 解説 (1) DAでは, 気体がする仕事 は負になるので, 整理 W'=2po (2Vo-Vo-po (2Vo-Vo)=poVo (2) B, C, D の温度 TB, Tc, TD は,Aとそれ ぞれボイル・シャルルの法則の式を立てると, povo 2po Vo po Vo 2po.2 Vo = To TB To Tc DoVo To Po.2Vo TD TB=2To, Tc=4To, Tp=2To A→Bは定積変化である。 気体が吸収した熱量 Q2は,定圧モル比熱 「Cp=5R/2」 を用いて Q₂=nC₂4T=1׳R×(4T,−2T₁)=5RT, (3)TcTp, T, Ta から, C→D, D→Aで はいずれも熱を放出している。 したがって, W povo Q1 + Q2 (3RT/2)+5RT 熱効率e は, e= Aにおける気体の状態方程式poV=RT から, e= po Vo 13RT/2 DoVo 13po Vo/2 = 2 13 = 0.153 0.15 327 明照

解決済み 回答数: 1
物理 高校生

(4)についての質問です。 ボールが何m移動したかという方の問題ではグラフから考えるのが簡単だしいいと言うのは分かるのですが、 何故x= v0t+1/2at^2という公式を使うと答えが出ないのかが分かりません。

JEST 発展例題2 等加速度直線運動 →発展問題 24,25,26 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、点0から5.0mはなれた点を速さ 4.0m/s で斜面下向きに通過し, 点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 5.0m P Q 6.0m/s NJ (9) (2) ボールを投げてから, 点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3) ボールの速度と, 投げてからの時間との関係を表すv-tグラフを描け。 (4) ボールを投げてから,点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 指針 時間 t が与えられていないので, 「v-vo2=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 解説 (1) 点0, Qにおける速度, OQ 間 の変位の値を 「v2-vo2=2ax」に代入する。 a=-2.0m/s2 (-4.0)2-6.02=2×α×5.0 (2)点Pでは速度が0になるので,「v=vo+at」 から 008 0 = 6.0-2.0×t t=3.0s 3.0s 後 OP 間の距離は, 「v2-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m (「x=cat + 1/2a2」からも求められる。) (3) 投げてからt [s] 後の速度v [m/s] は, 「v=vo+at」 から, v=6.0-2.0t e-tグラフは,図のようになる。 [m/s]↑ UT 6.0 OP間の距離 PQ間の距離 R 1 2 3 4 56t[s] -4.0 -6.0 (1) (4) 「v=vo+at」 から, -4.0=6.0+(-2.0) xt t=5.0s 50s 後入量の中原 (S) ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ 6.0×3.0 2 + (5.0-3.0)×4.0 2 =13.0m Point v-tグラフで, t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。

解決済み 回答数: 2
物理 高校生

(3) 棒PQにはたらく水平方向の力ってなんですか? 速さが一定になると力が0になる理由と流れる電流が0になる理由も分かりません。解説をお願いします🙇‍♀️

電磁力と誘導起電力 発展例題 45 鉛直上向きに磁束密度Bの一様な磁場中に, 2本の 直線導体のレールが間隔で水平に置かれ, 内部抵抗 スイッチ の無視できる起電力の電池, 抵抗値Rの抵抗, およ びスイッチに接続している。 レール上の導体棒 PQ は、レールと垂直であり, なめらかに移動できる。 E (1) スイッチを閉じた直後, 棒 PQ が磁場から受け る力の向きと大きさを求めよ。 指針 (1) スイッチを閉じた直後には, 棒PQにまだ誘導起電力は生じていない。 314 (2) 速さがvのとき, 誘導起電力はvBl である。 棒PQ を起電力 v Blの電池とみなし, キルヒ ホッフの第2法則を用いる。 (3) 速さが一定となるとき, 慣性の法則から, 棒 PQにはたらく水平方向の力は0となる。 解説 (1) スイッチを閉じた直後, 棒PQ の誘導起電力は0である。 棒PQを流れる電 流はQ→Pの向きに,I=号である。 棒PQ RD が磁場から受ける力の向きは, フレミングの左 手の法則から、 図の右向きとなる。 力の大きさ EBU Fは, F=IBl= R (2) 棒PQ に流れる誘導電流は,レンツの法則 棒PQ の速さが” となったとき, 棒 PQ に流れる電流の大きさはいくらか。 棒PQの速さは一定値に近づく。 この速さはいくらか。 E-vBl R 発展問題 536,537 P低 B v= 電磁誘等 から,P→Qの向きであ Pが低電位, Qが高 電位となる。 棒PQは, 誘導起電力を生じる電池 とみなすことができ,P が負極, Qが正極となる (図)。したがって,誘導起電力は,電池の起電 力Eと逆向きに 流をことすると、 Blである。 PQを流れる電 キルヒホッスの第2法則から、 E-v Bl E-vBl=Ri i== R (3) 一定の速さをvとする。 このとき, 棒PQに はたらく水平方向の力は0 となるので、流れる。 電流も0である。 (2) のの式を用いて, 0== E BU R E ◎B v Bl P

解決済み 回答数: 1
1/11