学年

教科

質問の種類

物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

共テ模試物理 丸が付いていますが、適当に解いたので理解していません。 分からないので教えてください。

問3 図3のように, 単スリットAと複スリットBおよびスクリーンを互いに平行 物理 に置き, 単スリットAの左側に単色光の光源を置いた。 破線は複スリットの垂 直二等分線であり,単スリットとスクリーン上の点を通る。複スリットBの スリット間隔をd, 複スリットBとスクリーンの距離をLとする。この装置を 用いてスクリーン上に生じる干渉縞を観察した。 このとき, 生じる干渉縞につい ての記述として最も適当なものを,後の①~④のうちから一つ選べ。ただし, d はLに比べて十分小さく,またスリットの幅も十分小さいものとする。 4 THESE 光源 ME 単スリットA 複スリットB ↑(ア) d 図 3 スクリーン (イ) ↑ 0 ① 単スリットA (ア)の向きにゆっくりと移動させると,スクリーン上の干渉 縞は (イ)の向きへ移動する。 ② 複スリットBをスクリーン側にゆっくりと移動させると, 点0の明るさは 明暗を繰り返す。 ③ 複スリット B をスクリーン側にゆっくりと移動させても, スクリーン上の 点 0付近の干渉縞の間隔は変化しない。 ④ 単スリットAをスクリーン側にゆっくりと移動させても、スクリーン上の 干渉縞の位置は変化しない。

回答募集中 回答数: 0
物理 高校生

模試の復習をしたいので解説お願いしたいです

〈注意〉 物理の受験者は、次の表に従って4題を解答してください。 選択問題 必答問題 1, 2, 3, 4 物理問題 【物理 必答問題】 1 次の文章を読み、 後の各問いに答えよ。 (配点30) A 解答は物理の解答用紙に記入してください。 斜面 SPHAL 161052 図1のように、 水平面となす角度が0のなめらかな斜面があり、 斜面上には表面がなめら かな壁 (斜面に垂直に立てられた薄い板)が設置されている。 壁の区間 AB は水平な直線に, 区間 BD は斜面上の点Oを中心とする半径rの半円になっており, それらは点Bでなめらか に接続されている。 点Bは半円の最下点,点Dは半円の最上点である。 壁の区間 AB 上に は,質量mの小球Pと質量Mの小球Q があり、その間にばね定数kの軽いばねを壁の区間 AB に沿って水平方向に置き,PとQをばねの両端にそれぞれ手で押しつけてばねを自然の 長さからxだけ押し縮めた状態で静止させている。 PとQから同時に手を静かにはなすと ばねが自然の長さに戻ったときにP と Q はばねから離れ, その後, Pは点Bを通過した。 ば ねは壁の区間 AB に沿って水平方向に伸び縮みするものとし, Pは常に斜面上を運動するも のとする。 また、ばねから離れた後のQは, 壁に沿って運動し,点Aに達した後,斜面の 外に出るものとする。 重力加速度の大きさを」とし、空気抵抗は無視できるものとする。 QばねんP Mcounomom 壁 図 1 - 2- B 選択問題の出題内容 O (60分) 水平面 C 問1 ばねが自然の長さよりxだけ縮んでいるとき, ばねの弾性エネルギーはいくらか。 問2 ばねが自然の長さに戻ったときの P Q の速さをそれぞれ, Vとする。 ばねが自然 の長さよりxだけ縮んでいるときとばねが自然の長さに戻ったときについて, P, Q 全 体の運動量の水平成分が保存することを表す式を答えよ。 問3 問2のはいくらか。 m, M, k, x を用いて表せ。 ただし、 解答欄には結論だけでな 考え方や途中の式も記せ。 点Bを問2の速さで通過したPは, 壁の内側に沿って斜面を上昇し, ∠BOC=90° と なる点Cを通過した後, 点Dから飛び出した。 問4Pが点Cを通過するとき,Pの重力による位置エネルギーはいくらか。 ただし, 点 Bを通る水平面を重力による位置エネルギーの基準面とする。 mor 9m9 問5 Pが点Dを通過するときの速さを、 問2の”およびr, 9, 0 を用いて表せ。 問6 Pが点Dを通過する直前に,Pが壁の内側から受ける力の大きさを, 問2の”およ ぴr, m, g, 0 を用いて表せ。 の最小値を求めよ!!! 問7 Pが点Dを通過するための問2の』の最小値を求めよ。 点Dから飛び出したPは, 壁の区間 AB上のある位置に到達した。 CAME 問8点Dから飛び出したPが到達した, 壁の区間 AB上の位置の, 点Bからの距離の最 小値を求めよ。 -3- 物 理

回答募集中 回答数: 0
1/5