学年

教科

質問の種類

物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

h=1/2gt² の式が分かりません。 tは飛び出した地点に戻ってきた時の時刻ですよね? 台車に衝突して戻ってくるということは 2h=1/2gt² では無いのですか?

26. <非慣性系における仕事とエネルギー 図のように、円弧状のすべり面をもつすべり台Aを固 定した台車が水平な床を右向きに一定の加速度 αで運動 している。 台車の上面は床に平行で, すべり台Aの左端 と右端の高さはそれぞれHとんである。 円弧の半径は H-hで,面はなめらかである。 重力加速度の大きさを gとする。 H 小物体 P 加速度 α すべり台AI 台車 株 (1) 質量mの小物体Pを, すべり台Aの円弧上で鉛直となす角0の位置にそっと置いたとこ ろ, 小物体Pは置かれた位置ですべり台Aに対して静止したままであった。 このとき, 加 速度αの大きさを求めよ。 (2)次に小物体を, すべり台Aの円弧上で台車からの高さHの点で台車に対して静止する ように置いてそっとはなすと, 小物体Pは円弧上をすべり すべり台Aから水平に飛び出 した。 この間における台車に対する小物体Pの速さの最大値 VM と, 飛び出す瞬間の台車 に対する小物体Pの速さVをそれぞれm, H, h, g, 0の中から必要なものを使って表せ。 (3)今度はすべり台Aの円弧上のある位置で小物体Pを同様にそっとはなすと, 小物体Pは 円弧上をすべり台車に対する速さ V ですべり台Aから水平に飛び出した。 その後, 小 物体Pは台車上面で1回衝突し, すべり台Aから飛び出した位置に再びもどってきた。 Vo mh, gの中から必要なものを使って表せ。 ただし, 面との衝突の際, 台車から見 た小物体の鉛直方向の速さと, 水平方向の速さは変わらないものとする。 [大阪大 改]

解決済み 回答数: 1
物理 高校生

問2 の弾性力による位置エネの式の意味がわかりません。よろしくおねがいします

15 問1 問2 ⑥ ドーは保存されるので から水平面上を運動して 問1 図aのように、上のばねは だけ伸び、下のばねは だけ縮んでいる。 よって 小球にはたらく力は、大きさ から点に達する 存されるので、重力に 水平面とすると の上のばねが上向きに引く力、 大きさ fi-k(l-h) 1-M の下のばねが上向きに押す力と 大きさ mgの下向きの重力であ る。 したがって, 小球にはたら 力のつりあいから 12 h mg 15 面にする直前の小 k(l-h)+k(l-h)-mg=0 であるので にする。 地球上での h=l- mg 2k ギーは、 この力学的エネル の2つの運動エネ 以上より,正しいものは ① 問2 小球の高さが1になったとき, ばねの長さの合 計がyなので,図bのように, 上のばねはy-21 だ け伸び、下のばねは自然の長さとなっている。 よっ て, 小球にはたらく力は,大きさ fi=k(y-21) の上のばねが上向きに引く力と大 きさmgの下向きの重力である。 したがって, 小球にはたらく力の つりあいから k(y-21)-mg=0 であるので 0000000 y= mg_ k +21 た y-21 ト mg 重力加速度の 動摩擦力は物 ある。 物体の初 までの距離を! レギーの変化が 2μg は24倍に 2倍になる。 ③となる。 また, 手がした仕事 W は ば ねとおもりからなる系の力学的エ ネルギーの変化であり、図aと図 bの状態の小球の重力による位置 エネルギーの変化 40 と弾性 力による位置エネルギー(弾性エ 図 ネルギー)の変化 40th の和に等しい。 よって W-40 +40 ばね =mg(1-n+1/24(y-212-12(1m)×2} =mg(1-h)+1/21k(y-21)-(1ール)。 以上より,正しいものは ⑥。

解決済み 回答数: 1
物理 高校生

この質問に答えて。問題はコメントにある。

4 (1)Ua= Cr(p-pal) Vo + Cop(V-Va) R (5) 圧力: 温度: -p (V-Va) U₁ = Capo (V - V₁) + Cv (p-po) V [考え方 R - po (V - Vo) から熱が 変化と (2) 考え方参照 考え方 (1) 気体の内部エネルギーの増加は、外 から与えられた熱量と仕事の和に等しい。 圧力po. 体積Voのときの温度をTとし,p, Vのときの温度をTとする。 また,過程Aで, P.Voのときの温度をT,過程で、po. Vのときの温度をT』 とすれば、次の4つの 状態方程式が成り立つ。 PoVo=RTo PV=RT pV = RT poV = RTs)..... 過程Aでの内部エネルギー増加U』は、 Us=Cr(Ta-To) + C, (T-TA) -p(V - Vo) PV の関係が y= である。 はじめの の圧力〔 1x ゆえに、 ① P = ここで, logio ~ ② ②式に①式から得られる To TA, T を代入 すると, Cr(p-po) Vo +Cpp(V-Vo) U₁ = R さらに, -0.0 -p (V - Vo) 過程Bでの内部エネルギーの増加 UB は, UB = C, (Ts-To-po (V-Vo) + Cv (T - TB) なので、 log10 対数法則 [10] ③れば せ ③式に①式から得られる To T, T を代入の?p= すると, UB = Cppo (V-Vo) + Cr(p-po)V R -po(V-Vo) (2)過程A, B のどちらでも,最初と最後の状 態は同じなので, UA = UB となる。 よって、 ② ③式を代入すると, Cp(p-po) (V-Vo)-Cr(p-po)(V-Vo) となり, R =(p-po) (V-Vo) Cp-Cv=R 240 定期テスト予想問題の解答 すなわち 次に ヤルルの 1 > 273 ゆえに、 (補足) を求める y=1 と表す。 対数関数 k loga

解決済み 回答数: 2
1/157