学年

教科

質問の種類

物理 高校生

(3)で力の向きが左手の法則よりどれも左向きと解説にあるのですが、どういうことですか? ab,cdで誘導起電力が発生しないのは何故ですか 助けてくださいお願いします

例正 磁場を横切る回路の電磁誘導 2 図1のように,水平面上に平行で2L〔m〕 だけ離れた2直線んとんに 挟まれた領域がある。その領域に,平面に垂直で紙面の裏から表に向かう 磁束密度B 〔Wb/m²] の一様な磁場がかかっている。 導線と抵抗 R [Ω] の2つの抵抗器をつないで,図1のように1辺の長さがL 〔m〕の正方形 の形状をした回路をつくる。回路全体の質量をm[kg] とし,導線の抵抗 と2つの抵抗器の体積は無視できるものとする。この回路を辺 ab が直線 ムに垂直になるように平面上におき,直線に垂直に右向きに運動させ, 2直線とに挟まれた領域を通過させる。 回路と平面の間の摩擦と回 路の自己誘導は無視できるものとする。 以下では辺ad が直線ムに重なっ た時刻を t=0s, 辺bc が直線に重なった時刻を t=t〔s〕, 辺 ad が 直線に重なった時刻を t=t〔s〕, 辺bc が直線に重なった時刻を t = t3 〔s] とする。 解答にはt, t2, ts を用いてはならない。 ↑ 回路の速さ [m/s] L b R/2 R/2 L a d ↑ 4₁ 2L OB 12 Uit u3 0 t₁ 0 図2 はじめに、回路の速さが一定値 (2) 回路を流れる電流 [A] v[m/s] をとる場合を考える。 t₂ 0≦t≦において, 正方形 abcd を貫く磁束の大きさの単位時 間当たりの増加分を求めよ。 0≦t≦において, 回路を流れ る電流を求めよ。 また,回路を流れ る電流 0≦t≦t における時間 (3) 回路が磁場から受ける力の大きさ 〔N〕 変化を右図のグラフに図示せよ。 た だし, 図 1 で a→b→c→d→a の向きに流れる電流を正とする。 (3) oststにおいて,回路が磁場 til ti t₂ tt [s] t₂ ta't [s] tst [s]

解決済み 回答数: 1
物理 高校生

この問題のボイルシャルルの問題はなぜ、A+B=ABみたいにしてるのですか? 186番の問題ではA=ABみたいにボイルシャルルで作ってるんです。どなたか教えてください

●センサー 60 単原子分子の理想気体のと 3 5 き, Cy=-R,C,== 2 例題 44 気体の混合 容積 6.0×10-3m²の断熱容器 A の中には 1.5×10 Pa, 300Kの単原子分子の理想気体容積 3.0×103m²の断 熱容器Bの中には4.5 ×10°Pa 270 K の単原子分子の理 想気体が入っている。 コックを開いて両方の気体を混合 し,十分に時間がたった後の圧力p [P.]と絶対温度 T [K] を求めよ。 ●センサー 61 全体の体積が不変 (仕事が 0) 断熱のとき, 内部エネ ルギーは保存される。 122 第Ⅱ部 熱力学 (3) 単原子 UA+UB=U 閉じ込めた気体では,物質 量が保存される。 NA+NB=n 3 AU=nCyAT=nRAT[J] 2 (4)(1)~(3)より,Q=4U+W(熱力学第1法則 ) M=90×8=0.W=0(どこも押し動かしていないので仕事は より, AU=0である。 H PAVA DBVB_D(VA+VB) + RTA RT 207212 3 3 3 3 2 PAVA+PBVB = P(V₁ + V₁) V より. -U==nRT= RT (1.5 ×10) × (6.0×10 - 3 ) 300 (2.5 ×10) × 16.0 × 10-3 +3.0×10-3) T ゆえに,T= 2.8×10 [K] B り Nik RT (4.5 ×10) x (3.0×10-3) + 270 23 A (1.5 × 10%) × (6.0 × 10~) + (4.5 × 105) × ( 3.0×10-3) =p(6.0x10-3+3.0 × 10-3) ゆえに, p= 2.5×10°[Pa] mol)の単 この体の定モル状態 (2) 体脂定で量QU〕を加 (3) 圧力一定量Q0) を加 FF 206 等護変化 気体の温度 縮したこのとき、気体は 気体の混合絶対温 の入りはないものとす EURST 201 V=nRT

解決済み 回答数: 2
物理 高校生

力のつり合い 解答の図示が行われているところで、なんでそこがcosθになるのかがわかりません。教えてください🙇

発展例題 13 斜面上の物体にはたらく力のつりあい 傾きの角が30°のなめらかな斜面上にある, 重さ W [N] の物体に, 斜面に平行な 方向に力を加えた場合(図1) と, 水平方向に力を加えた場合 (図2), 物体はともに 斜面上で静止した。 図 1, 2 W Fi W において,物体に加えた力の 大きさを Fi〔N〕, F2〔N〕, 物 体が斜面から受ける垂直抗 力の大きさを Ni〔N〕, N2〔N〕 図 1 とするとき,F, と F2, N1 と N2 の大小関係をそれぞれ式で表せ 考え方 解答 図1′から, F1=Wsin30°- =/w -W〔N〕 (001) 図1:斜面に平行な方向と垂直な方向に力を分解 図2: 水平方向と鉛直方向に力を分解 - N₁=W cos30°= √3W(N) 2 >US 図2′から, F2=N2sin30°,N2cos30°=W 小 よって, N2=cos30° W 2√3 3 別解 図1”:力Fと垂直抗力 Nの合 力が,重力 W とつりあう。 図2":力 F2と重力 W の合力が 垂直抗力 N2 とつりあう。 図から明らかに, Ni<N2 130° 3010082 N₁ さてWsin30。 toitara 30° W 図1 30° W EROT HOW 図 1 + W cos30° 30° F1 コ各方向ごとの力のつりあい A>N₂ RENOZ) H N₂sin30° 図 2 ACCESS 3発展問題 A 1複斜面上の2物体の力のつりあい 図のように、開 傾きの角が30°60°のなめらかな複斜面の上に, 重さ F₂ REA 3 W(N), F₂=N₂=¹3W(N) +31(061) _Fi<F₂, №₁<N₂ √3 N₂ HOBO STEE 30°W 図2 $120SS N₂cos30° Be F2 A WA 30° WYS Mamm 図 2" F2 また,F1=Wsin30°= 1/21W[N], F2=Wtan30°= 1/3W [N] よって,Fi<F2 ŠŠ √3 とに立てる (S) ・頻出重要 B

解決済み 回答数: 1