学年

教科

質問の種類

物理 高校生

力学(バネ)の分野で質問があります。11の答えは(ア)の同じなのですがなぜそうなるのかわからないです。元の位置に戻ろうとするから逆向きなのではないのですか?教えて頂きたいです。

【3】 以下の問題文を読んで [ した向きと11 (7) 同じ、(イ) 逆) 向きに大きさ [12 〔N〕の力がはたらく。このとき、ばねに蓄え られる弾性エネルギーは、13[J] となる。 いま, 物体に加えた力を取り除くと物体は振動し、物体の速 [d] その記号を記入しなさい。 ただし, ばねの質量は無視できるものとする。 [m] のばねの一端に質量m[kg] の物体をつけて 図3(a)に示すように、 自然長がる 〔m〕 でばね定数k (a) 滑らかな床の上に置く。 ばねの他端は壁に固定されて いる。 図3(b)に示すように、物体に力を加えてばねを (b) (0) [m] だけゆっくりと伸ばすと, ばねには伸ば 100000 □の中に適当な式を入れなさい。{}の中からは適当なものを選び m (a) t=to V₁ k ・ MO m m (b) t=h m (c)m M2 M21 m (c) (=h -- V M k さの最大値は 14 [m/s] となる。 次に, 図3(c)に示すように。 同じばねの両端に質量 m [kg] の物体をつけ, 両端の物体に力を加えてばね をwo(>0) [m] だけゆっくりと伸ばした。 その状態 で加えた力を取り 脇 ) 図3 makx. takat ma. M2 図4 h

解決済み 回答数: 1
物理 高校生

(ウ)x=0のときとで力学的エネルギー保存則は成り立たないのですか?

(4) 物体( 190 ゴムひもによる小球の運動 屋根 次の文中の を埋めよ。 図のように,屋根の端に質量の無視できるゴムひもで小球をつな いだ。小球を屋根の位置まで持ち上げてから、落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きに x軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方, x>L のとき,ゴムひもは伸 びて張力がはたらき, ばね定数んのばねとみなせる。 小球は鉛直方向にのみ運動し,地 面への衝突はないものとする。 重力加速度の大きさをg とする。 x 小球を屋根の位置 (x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると,x1=イである。 x=x1 での小球の速さは,ウであ る。さらに小球は下降し, 最下点に到達した後, 上昇した。最下点の位置を x2 とするこ X2 また, 最初に x1 を小球が通過してから最下点を経て, 再びxi に である。 どってくるまでに要した時間は オである。 [18 明治大 ] 向に振り子け佰く 182,18

解決済み 回答数: 1
物理 高校生

(2) 投げた時に初速度があるのに自由落下として考えていいのはなぜですか? 壁に衝突前後で鉛直方向の速さが変化しないというのはわかるのですが、それでも投げた時に初速度があるから鉛直投げ下ろしで考えないといけないんじゃないんですか? 解説をお願いします🙇‍♀️

第1章力学 問題 24 固定面との衝突 図のように,質量m 〔kg) の小球を水平な床の鉛直 上方h 〔m〕の位置から, ([m) 離れたなめらかで鉛直な 壁に向かって、壁に垂直な水平方向に初速度v 〔m/s) で投げたところ, 小球は壁に当たってはね返り, 床に 落下した。 小球と壁との間の反発係数(はね返り係数) をeとし,重力加速度の大きさをg〔m/s2) とする。 (I) 小球を投げてから壁に当たるまでの時間はいくら か。 小球を投げてから落下点に到達するまでの時間は いくらか。 (3) 壁から落下点までの水平距離はいくらか。 物理 衝突によって鉛直方向 (壁に平行な方向) の速度成分は変化しないので 鉛 直方向では壁に当たる前と後に分ける必要はない。 求める時間をた〔s〕とす ると,距離〔m〕の自由落下と考えて、 1 h = 29t22 よって,t= 2h -[s] g [s]である。この (3) 壁に当たってから落下点に到達するまでの時間は 間 水平方向には右向きに速度 ev [m/s] の等速度運動をするので、 求める 水平距離 x[m] は, 2h x=ev(tz-t) = ev [[m] wg v (4) 小球が壁から受けた力積は, 垂直抗力によるものである。 (4) 小球が壁から受けた力積の大きさはいくらか。 Pointe <愛知工業大 〉 物体が受けた力積の求め方には,次の2つがある。 (i) (物体が受けた力) × (力を受けた時間) (解説) (I) 小球を投げてから壁に当たるまでの間, 水平方向には左向 きに速度v [m/s] の等速度運動をするので,求める時間を 物体が受けた力積 t] 〔s] とすると, 01 = vt₁ よって, =- (s) ひ (2) 壁に衝突することで, 速度がどのように変化するか を考えよう。 壁はなめらかなので, 壁と接触している 間に壁から受ける力は、垂直抗力のみである。 そのた め,壁に平行な方向の速度成分 (右図のvy) は変化せず, 壁に垂直な方向の速度成分 (右図のvx) は変化する。 反 発係数をeとすると,次のようにまとめられる。 vx なめらかな壁 Vy → 垂直抗力 evx (ii) 受けた力の方向の物体の運動量変化 この問題では、壁と接触している時間がわからないので, (i)では求められ ない。 (ii) 運動量変化で求めよう。 水平右向きを正として、水平方向の運動量 ま 変化より 内系材(小球が壁から受けた力積)= m.ev-m(-v) 運動量変化 =(1+e)mv〔N・s〕 注 反発係数eの値の範囲は0≦e≦1であり, e=1の衝突を弾性衝突(または完全 弾性衝突), 0e<1の衝突を非弾性衝突, e=0の衝突を完全非弾性衝突という。 toder Vy Point なめらかな壁に反発係数eの衝突をするとき, ・壁に平行な方向 壁に垂直な方向 52 52 速度成分は変化しない。 ・速度成分は向きが逆に,大きさが倍になる。 (1) (8) (2) 2 (s) 2h 12h (3) ev Ng [[m] ひ g (4)(1+e)mv〔N's〕 5. 力積と運動量

解決済み 回答数: 1
物理 高校生

mをどうやって求めているのか全くわかりません💦 教えてくださいお願いします🙇

339クインケ管による実験 図のような, 入り 口Sから音を入れ, 左右2つの経路 (SAT と SBT) を通った音を干渉させ、出口Tでその干渉音を聞く 装置がある。 はじめ, 左右の経路の長さは等しく ができる。 S A) B なっている。 この状態からBをゆっくり引き出して出音 いったところ,Tで聞く音が次第に小さくなり T 0.17m 引き出したところではじめて最小となった。 音の速さを3.4×102m/s とする。 (1) 音の波長と振動数はいくらか。 (2)定性 音の振動数はそのままで室温を上げて同様の実験をすると, 音がはじめて 最小になるまでにBを引き出す距離は, 長くなる・短くなる・変わらないのどれか。 ヒント (1) Bl〔m〕 だけ引き出す ⇒ 経路差は21〔m〕 (2) 音の速さが大きくなる。 1,2 6.4×10 Hz 340 音の干渉図のように, スピーカー A, B から同じ振動数の音を出す。 A, B から等距離にあ る点0で音の強さは極大であり,点から直線AB に平行に移動すると,音の強さは次第に小さくなっ てから大きくなり, 点Pで再び極大になった。 「聞く T CA 2.5m OS-01X04.8 2.5m P 2.5 -12.0 m- B (1) スピーカー A, B が出す音は, 同位相か逆位相か。 BC ISOXONE (08-)-01x04.E (2) スピーカーが発する音の波長はいくらか。 aa 6.8×10 Hz ➡2 ヒント (2)点Pで音の強さが極大となるので,|AP-BP|は波長の整数倍である。

解決済み 回答数: 1
物理 高校生

答えと解き方を教えてください🙇

STEP 1 公式チェック □U1-1 【等速直線運動】 軸上を一定の速度 [m/s] で動く物体が、 時刻 0s に位置x=2〔m) を通過した。この物体の時刻 [s] での位置ェ 〔m〕は? I= 学習時間 do-vt □U1-2 【等速直線運動のグラフ] r〔m〕 tグラフの傾きは 【 1 】 を表す。 また, b-tグラフで囲まれた面積は 【②】 を表す。 傾きは v[m/s] 面積は Do ① Io =rotot 速度 0 0 t(s) t(s) ② 動 □U1-3 【等加速度直線運動】 時刻 0sに原点Oを初速度vo [m/s] で出発して, 一定の加速度α [m/s] でx軸上を運動する物体がある。 物体の時刻 t [s] での速度 v= x= [m/s] は? 物体の時刻t [s] での位置〔m〕は? これら2式からt を消去した式は? □U1-4 【等加速度直線運動のグラフ】 za's x-tグラフの傾きはその瞬間の 【③】 を表す。 x=vot+ at x [m] b-tグラフの傾きは 【④】 を表 し, v-tグラフで囲まれた面積は 【⑤】 を表す。 v[m/s] v=vo+at 傾きは は 2 v²-vo²= ③ ④ 加速度 分 傾きは Vo O t[s]) t t[s] ⑤ 移動距離 □U1-5 【相対速度】 直線上を速度vAで運動する物体Aと速度UB で運動する物体Bがあ る。 Aから見たBの速度 (相対速度) VAB は? VAB = □U1-6 【自由落下】 初速度0m/sで落下する (自由落下する) 小球がある。重力 O+ 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を原 49 点として鉛直下向きにy軸をとる。 自由落下を始めてかYO ら時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕 は? v= ¥0 y= y〔m〕 □U1-7 【鉛直投げ上げ】 小球を鉛直上向きに初速度vo [m/s] で投げ上げた。 重力 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を 原点として鉛直上向きにy軸をとる。 投げ上げてから 時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕は? これら2式からtを消去した式は? y〔m〕 yo 0= AVO y= O+ 147

解決済み 回答数: 1