学年

教科

質問の種類

物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

142 熱 49 熱力学 断熱材で作られた円筒形の容器に〔mol]の 単原子分子の理想気体が入っていて、圧力と温 TOK] は大気のそれと等しい。 ピストンMの 質量は 〔kg] で滑らかに動く。はじめMはス トッパーAで止まっており、容器の底からの高 さはLQm] である。 気体定数をR [J/mol・K], 重力加速度(m/s²] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ, 温度が T1 [K] になったときM が上に動き始めた。温度 T と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け高さが2.2L[m]となった。このとき の温度 T [K] を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W 〔J〕 と気体に加えた熱量 Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして,外力を加えてMを ゆっくりと押し込み、元の高さL 〔m〕まで戻した。 このときの気体 の温度 T3 〔K〕 を求めよ。 また, このとき気体がされた仕事 W 〔J〕 を求めよ。 ただし、この断熱変化の過程では圧力と体積Vの間に (京都工繊大) はPV =一定の関係がある。 Base M ヒーター 10000 Cv= Level (1), (2)★ (3)★ Point & Hint (1) 前後の状態方程式と、ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では, 気体がする仕事 = PAVとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 γは比熱比とよばれ, y=Cp/Cv ここで は単原子なので,y= =1/12/2/12/2R=7/3/3 となっている。あとは第1法則の問題。 5 h= 単原子分子気体 nRT U= 3 5 = 2R CP=R 2 ※ この3式は「単原子」のとき LECTURE 初めの気体の状態方程式は ピストンが動き始めるときの圧力をPとすると PSL = nRT …..……② (1) そして,このときのピストンのつり合いより PS = Pos+Mg...... ③ T₁=To+ _MgL nR4 ①〜③ より 定積変化だから より (2 そして (2) Pi での定圧変化が起こる。 状態方程式より P₁S³/L=nRT₂ また, Q=nCvAT= PSL = nRTo ...... ① T₂ = ³2 T₁ = 3 (To+ MgL nR W2 = Pi4V = Pi P.(S. 3/L-SL) Q2=nCpAT = n 状態方程式より 5 2 第1法則より より 49 熱力学 nR(T₁-To) = MgL 2 2 T3= ③ -T₁ (3) 高さまで押し込んだときの圧力をP3とすると P.(S-L)* = P.(SL) P3= 3 PS を用いて. Ws = Mg AU』を調べ ( 4U2=2R(T-T)) 第1法則 4U2 = Q2+(-Wa) を用いて Qを求めることもできるが、まわりくどい。 =1/12P.SL=1/12nRT=1/12(nRT,+MgL) ②を用いた .. T = n. 52 R (T₂ - T₁) = (nRT. + MgL) 143 ピストンが動いて も上図の状況は変 P.S わらない。 つまり, 圧力 P1 は一定 'P・SL = nRT3 ...... ⑤ - (3) ³T = (3) (T. + MgL) 'T nR 2nR (T₁-T₂) = 0 + W₁ P1 = (2)(2)-1) (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

(2)番についてです 自分は位置エネルギーと大気圧への仕事も考えてW=pΔv+MgL/2+p0ls/2 と考えたのですが、解答では位置エネルギーとか考慮していません。なぜですか?

49 熱力学 断熱材で作られた円筒形の容器に〔[〔mol] の 単原子分子の理想気体が入っていて, 圧力と温 度TOK]は大気のそれと等しい。 ピストンMの 質量は Mi [kg] で滑らかに動く。はじめMはス トッパーAで止まっており, 容器の底からの高 さはL][m]である。気体定数をRJ/mol・K], 重力加速度を[m/s2] とする。 (1) ヒーターのスイッチを入れて気体を加熱し たところ、温度が T1 〔K〕 になったときM が上に動き始めた。 温度 T1 と気体に加えた熱量 Q1 〔J〕 を求めよ。 (2) Mはゆっくり上昇を続け、高さが12/23L 〔m] となった。このとき の温度T2 〔K〕を求めよ。 また,Mが動き始めてからこのときまで に気体がした仕事 W2 〔J〕 と気体に加えた熱量Q2 〔J〕 を求めよ。 ここでヒーターのスイッチを切った。 そして, 外力を加えてMを ゆっくりと押し込み, 元の高さL 〔m〕まで戻した。 このときの気体 の温度 T 〔K〕を求めよ。 また,このとき気体がされた仕事 W [J] を求めよ。 ただし, この断熱変化の過程では圧力Pと体積Vの間に は PV 3 =一定の関係がある。 (京都工繊大) Base 771 3 Level (1),(2)★ (3)★ Point & Hint Cv= Cp= ※ この3式は「単原子」のとき (1) 前後の状態方程式と, ピストンが 動き始めるときの力のつり合いを押さ える。 大気圧をPo, ピストンの面積をS とでもおくとよいが,これらの文字は 答えには用いられない。 (2) なめらかに動くピストンが自由になっていると 定圧変化が起こる。 定圧変化では,気体がする仕事=P⊿Vとなる。 (3) 断 熱変化では,PV=一定が成り立つ。 ♪は比熱比とよばれ, y=Cp/Cv ここで は単原子なので, y = = 12/12/12/2=121238 となっている。あとは第1法則の問題。 M -R ヒーター 10000 単原子分子気体 3 U= -nRT 2 5 R LECTURE (1) 初めの気体の状態方程式は PSL = nRTo ...... ① ピストンが動き始めるときの圧力をPとすると PSL = RT ...... ② そして、このときのピストンのつり合いより PS = PS+Mg..... ③ MgL Ti = To+ nR QinCvAT=- R(T₁-To) = 32 MgL ① ~ ③より 定積変化だから P1での定圧変化が起こる。状態方程式より PS・・ S/L=nRT2 4 (2) より そして そ T₁ = 3 T₁ = 2 (T. + Mg L nR W₁ = P₁AV = P₁ (S. 3/L-SL) より 49 熱力学 状態方程式より (3) 高さまで押し込んだときの圧力を P3 とすると B 第1法則より PS T3 = Mg また, Q2=nCAT=n212R(T2-T)=(nRT+MgL) 4U』を調べ ( 4U2=220R (T-T) 第1法則 4U2 = Q2+(-W)を用いて 4U₂ Qを求めることもできるが、まわりくどい。 143 P.(SL) = P.(SL) ( ∴. P3= P1 PS ピストンが動いて も上図の状況は変 わらない。 つまり, 圧力 P1 は一定 =1/23PSL=/1/2nRT=1/12(nRT+MgL) ②を用いた (2) *P₁.SL = nRT .... (3) ³T₁ = (3) ³( T. + MgL) 'T= nR 2nR(T₁-T₂) = 0+W₁ W₁ = (2) ² (2) ³-1} (nRT. + MgL)

回答募集中 回答数: 0
物理 高校生

赤丸の問題が分かりません。答えはm=2です。 私はΔl=3√3d/2(=定数)であることから714(m+1/2)=429(m+3/2)と立式したのですが、答えが求まりませんでした。

薄膜における光の干渉は, シャボン玉の色付きなどに見られる身近な現象であるとともに、 膜厚計測など工学的にも重要な現象である。 図1のように, 屈折率 n, 厚さdの透明なフィ ルムに対して,入射角 Q1で波長の単色平面波の光が入射する場合を考える.ただし 262 n> 1 とし,nは波長によらず一定とする. 経路 Ⅰ 経路ⅡI 日 2 B 図 1 C 検出器 BY フィルム 0JJS bar ASTRO AR TEKS TERRES OD TUALE (い)の [1] 下記の経路I, 経路ⅡI を進む光について考える. フィルム周囲の媒質は屈折率 1.00 の空気とする. 以下の問いに答えよ. 経路 Ⅰ : 点Aで屈折し, 点 B で反射し、点Cで屈折して点Dに達する経路 経路ⅡI: 点A'を通り, 点Cで反射し、 点Dに達する経路 (1)経路Iの点Aで屈折した光は,屈折角 62 の方向に進んだ. sing を n, Q を用い て表せ. (2) 経路Iの各点 A, B, C および経路ⅡIの点Cを光が通過する前後における波長および 位相の変化について,最も適切な選択肢を以下の①~⑥の中から選べ.同じ選択肢を複 数回選択してもよい。 波長は長くなり, 位相は変わらない. (2) 波長は長くなり,位相は 180° ずれる . (3) 波長は変わらず、 位相も変わらない. (4) 波長は変わらず, 位相は 180° ずれる . (5) 波長は短くなり, 位相は変わらない. (6) 波長は短くなり,位相は180° ずれる.

回答募集中 回答数: 0