学年

教科

質問の種類

物理 高校生

大至急です!!!!!!!!!!!!!! 物理の実験なんですけど、この実験から何がわかって何を伝えればいいのかわかりません。助けてください! 3枚目の紙をまとめて提出します!

課題の背景 「物理基礎」 1学期力学分野 パフォーマンス(レポート) 課題 力学は, 物体にはたらく力に着目することによって, 現実に起こる現象を解明・予測する学問で す。一見すると予想と反する現象が観測されたとしても, 物体にはたらく力に基づいて注意深く考 察すると,一貫した原理・原則に従って現象が生じていることを確認できます。 また, 力学の考え 方 力のつりあいや作用・反作用の法則等) を用いると, 物体が静止するという何の変哲もない現 象から, 物体が持つ固有の性質(質量,体積,密度など) を知ることができるのです。 課題 右図に示すように, 台はかりの上に水の入ったビーカーを乗せて, ばねは かりに取り付けられた糸に物体をつるして水中に完全に沈めます。 このと き物体を沈める前と後の台はかりの示す値とばねはかりが示す値をそれぞ れ測定します。 上述の実験を同じ質量 (約115 ~ 120g 程度とする) で異なる 体積を持つ球形の物体 A, B, C (A: 直径4cmの球, B: 直径5cm の球, C:直径 6cmの球) の場合で行います。 ばねはかり 異なる体積の物体を沈めたときの測定結果から, 台はかりが示す値の変化 の規則性について、 以下の点に注意を払いつつ, 分かりやすくまとめてみま しょう。 必要であれば, 水の密度を1.0g/cm3として考えても良いです。 (1) 実験手順を簡潔に示して, 実験によって得られた測定値を正確に, 整理して表にまとめる。 (2) 台ばかりの値の変化の規則性について, 力のつりあいや作用・反作用の法則に基づいて解釈し て,分かりやすくまとめる。 台はかり 本課題を踏まえた発展的内容 上記の実験で見出された法則を活用して, 右図のような複雑な形状を持つ未 知の物体Xの密度 (水の密度よりも大きい) を測定する簡潔な方法を提案し てください。 また, 水の密度よりも小さい物体の密度を測定するにはどのよう にすれば良いでしょうか。 ■本課題における評価ポイント 課題レポートでは,科学的な思考/表現プロセスの全体が評価対象になるので、他の人にも伝わる ように,自分の考え方を, 言葉 数式・図表などを用いながら、 分かりやすく説明してください。 なお,本課題では考察部分の記述から主に次の点について評価します(ルーブリックを参照)。 力のつりあいと作用・反作用の法則を適切に使いこなしている。 • 台はかりが示す値の変化について, ばねはかりの値と関連づけるなど, 実験結果に基づいて科 学的に妥当性の高い考察を提示している。 • 各物体にはたらく力の矢印の作図をするなど, 図表や言葉数式などを用いて, 分かりやすく 書かれている。

回答募集中 回答数: 0
物理 高校生

高校物理の円運動の問題です。 マーカー引きしている箇所で①に③を代入して整理するとSが求められるのですが、 どのように整理したらこの解答に導けるのかわからずおります。 (その過程がわかりません) そもそも代入箇所は、V2への代入でいいのでしょうか? 教えていただけると幸いです。

問8-3 右ページの図のように,長さlの糸に質量mの物体を結び、最下点で初速度を 与えた。 以下の問いに答えよ。 (1)糸が鉛直方向となす角度が0のときの糸の張力Sを求めよ。 (2) 物体が1回転するために必要なvo に関する条件を求めよ。 この問題では,物体の高さが変わるため, 物体の速さも変化します。 つまり、この問題における円運動は,等速円運動ではないのです。 等速でない円運動の場合でも基本的な考えかたは等速円運動のときと同じですよ。 (1) は「円の中心方向の力のつり合いを考えて, S=mgcose」としてはダメです。 物体は静止していない、つまり,円運動をしています。 円運動をしているということは,中心方向に加速度が生じていますよね。 加速度が生じているということは,力のつり合いではなく, 運動方程式を立てて考えなければならないということです。 <解きかた (1) 向心力は、張力Sと, 重力の中心方向成分である-mgcoseとの和 S-mgcos 円運動の半径はlなので、運動方程式F=maにあてはめると v2 S-mgcosQ=m ………① F a 献により、 また、物体は最下点から高さl (1-cose) の位置にあるので 力学的エネルギー保存則より 1 mvo=mgl(1-cose) + -mv² 2 位置エネルギー 運動エネルギー 最初の運動エネルギー ・③ 問題文にない』を消去 Onie? ②より,v=vo2-2gl (1-cos) ①③ を代入して整理すると, 求めるSの値は 2 S= mvo l + mg (3cos 0-2) 答 ......④ ちょっと難しく感じたかもしれませんが使ったのは運動方程式 (①式) と, (①式)と、 力学的エネルギー保存則 (②式)の2つで、 ①式が円運動になったというだけです。 「円運動でも使う道具は今までと同じ」と考えておけば怖くはないですよ。

未解決 回答数: 1