学年

教科

質問の種類

物理 高校生

数1青チャートの問題で (2)です 任意の実数xってどういう意味ですか? 問題の意味が理解できません a=0のとき例えばx=0は成り立たないと解説の最初の方にありますがなんのことかわからないです

194 00000 基本 115 常に成り立つ不等式 (絶対不等式) (1) すべての実数x に対して, 2次不等式x2+(k+3)x-k> 0 が成り立つよう な定数kの値の範囲を求めよ。 (2) 任意の実数x に対して, 不等式 ax2²-2√3x+a+2≦ 0 が成り立つような定 数αの値の範囲を求めよ。 p.187 基本事項 指針左辺をf(x) としたときの, y=f(x)のグラフと関連付けて考えるとよい。 (1) f(x)=x2+(k+3)x-kとすると, すべての実数x に対してf(x)> 0 が成り立つのは, y=f(x)のグラフが常にX軸より上側 (v>0 の部分)に あるときである。 y=f(x)のグラフは下に凸の放物線であるから, グラフが 常にx軸より上側にあるための条件は, x軸と共有点をも たないことである。 よって, f(x)=0の判別式をDとする と, D<0 が条件となる。 D<0はkについての不等式になるから, それを解いてんの値の範囲を求める。 (2)(1)と同様に解くことができるが,単に「不等式」 とあるから.α=0の場合(2次 y=f(x) f(x)の値が常に正 a=0のとき、 y=f(x) の よって す の条件は, x軸と共有 ある。 2 める条件 であるか よって a<0と [補足] この例題 対不等式

解決済み 回答数: 1
物理 高校生

(4)です、 どうして絶対値を外すことができのかわかりません、 この状態で振動数の大小ってわかるんですか?

出題パターン 観測者 0, 振動数fの音を出す音 源 S, 反射板Rが図のように一直線音 上に並んでいる。 音速をc とする ここでRとOが静止し, Sが正の方 向に速さ”で動くときは、親の下での (1) 直接音の振動数 (2) 反射音の振動数 2 (3) 反射音の波長 入 RSO HOÁÓ 2 (4) 直接音と反射音によって生じるうなりの振動数はいくらか。 ただし,風 はないものとする。の伝わ ア:(波長)圧縮f= (分母小さく ) 解答のポイント! うなりの振動数 (1秒に何回うなるか) = 2つの振動数の差 解法 (1) (2)図 15-6のように, 音が伝わるよ うすを図示する。 ここでドップラー効果 が起こるのは図15-6では動く音源の音 の発射時のアとイで,アでは音源が前方 りの音の波長を「ギュッ」と圧縮し、で は後方の音の波長を 「ベローン」と引き 伸ばしている。 C f₂ f h2=- 48 振動数・波長 ・ うなり c+v = C- 音速 C f₂= c+vf cf C-v 静止 U ドップラー効果の式の立て方より、 ジ GUIDARTHOFOR-0450 08 GUD: c+v 1-2 (S) (1) steiadk ア直接音 V イ:(波長)引き伸ばした JIMS): (分母大きく) HIST (3) 引き伸ばされた反射音の波長については,すでにたとcとで2get! して いるので波の基本式より) 550 容 2 反射音 15-6 (4) 図 15-6 で観測者 いるので,うなりを観測する。 うなりの振動数は犬との差で, 7 (+9) TV- 2cvf cf_ f-fl=-=- まず何よりも先に振動数を計算しておいて, そ の後に波の基本式で波長を計算するのがコツ! t₂ 静止 というわずかに振動数の異なる音を同時に聞いて A till STAGE 15 ドップラー効果 165

解決済み 回答数: 1