学年

教科

質問の種類

物理 高校生

高校物理 75番の(3)と79番鉛筆で波線引っ張った部分の解説がわかりません。教えて欲しいです。

54 第1章 物体の運動とエネルギー 75 仕事率 重力加速度の大きさを 9.8m/sとして、次の仕事をそれぞれ求める (1) クレーン車が質量 2.0×102kgの物体を,一定の速さで35秒間に10m持ち上げ たときの仕事率 2) 自動車が1.5×10°Nの推進力で,一定の速さ 18m/s で走行したときの仕事率 773) 50kgの人が,1.0 分間に高さ12mの階段を一定の速度で上がったときの仕事 ヒント (3)この人は自分にはたらく重力に逆らって12m移動する。宝一高 ➡1 9102 運動エネルギーと仕事 図のように,斜面上に質量 76 3.0kg の台車を置き, 速さ2.0m/sですべらせたところ, ある時間が経過した後に, 台車の速さが6.0m/sになった。 この間に,台車にはたらく合力がした仕事はいくらか。 ➡2 77 ヒント 台車の運動エネルギーの変化) = (台車がされた仕事 ) 9/10 2.0m/s さ6.0m/s 18 ●運動エネルギーと仕事 質量 2.0×10-2kgの小球が, 厚さ 3.0kg # ST 2\m0.0.10m 0.10mの鉛直に固定された木材に,速さ 3.0×102m/s で水平に打ち こまれ、木材を貫通した直後に 1.0×10m/sの速さになった。 木材 の中を進む間, 小球は木材から一定の大きさの抵抗力を, 運動の向き と逆向きに受けるとする。 また, 重力の影響は無視できるものとする。 (1) 小球が木材を貫通するまでに、木材の抵抗力が小球にした仕事はいくらか。 T(2) 木材の抵抗力の大きさはいくらか。 OS ヒント (1) (小球の運動エネルギーの変化)=(小球がされた仕事 ) 223 ・木材 ➡2 NET 78重力による位置エネルギー 崖から10m上の塔の屋上には 質量 2.0kgの物体Aがあり, 崖から15m下の水面には質量面 4.0kgの物体Bが浮かんでいる。 重力加速度の大きさを 9.8m/s20 とする。 AQ 塔 10m 崖 (1) 水面を基準にとるとき, A,Bの重力による位置エネルギーは それぞれいくらか。 15m B (2) 崖を基準にとるとき, A, B の重力による位置エネルギーはそ れぞれいくらか。 -2 水面 79弾性力による位置エネルギー 図のように, 一端を壁 ヒント 重力による位置エネルギーは,基準のとりかたによって正にも負にもなる。 駐車 車 に固定したばね定数 3.0 × 102N/m の軽いばねの他端に物体 をつけて,この物体を水平方向に手で引く。 00000000 (1) ばねを自然の長さから10cm伸ばすとき, 物体がもつ弾性力による位置エネル ギーはいくらになるか。 また,このときに手が加えた力がした仕事はいくらか。 2)このばねをさらに10cm伸ばすとき、物体がもつ弾性力による位置エネルギーは いくらになるか。 また、このときに手が加えた力がした仕事はいくらか。 ➡2 ヒント 弾性力による位置エネルギーは, 弾性力に逆らって加えた力のした仕事に等しい。

回答募集中 回答数: 0
物理 高校生

202の(3)を教えてください。(2)と同じになると思いました。

こり、 という. 分子内部での電子 より電荷のかた この現象を利用している.また, (3) )のかたよりによってお 200 (クーロンの法則) 次の問いに答えよ. クーロンの法則の比例定数はk=9.0×10N・m²/C2 とする. (1) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cを3.0m離しておくときの静電気力の大きさ は何N か. 20×10-12 12×1.3×101 1.8×10-2N (2) 2つの点電荷g1 = 3.0×10 C, g2=6.0×10 Cの間に0.20Nの力がはたらいた. 点電荷 間の距離は何か。 =9.0×109.3.0×106×6.0×10%= 390x 10'm 3点電荷71=3.0×10 °Cと点電荷g2 を 1.0m離しておいたら270-Nの力がはたらい た点電荷Q2の電気量は何Cか. 9.0×104×3.6×106Q2=27×10-3 H Q2 28×6-3 9.5×10°×3×107 練習問題 A 201(クーロンの法則)+3.0×10 C, -1.0×10-Cの電荷をもつ同じ大きさの2つの小さな 金属球が0.30m離れた位置におかれている。 クーロンの法則の比例定数を9.0×10°N・m²/C2 とする. (1) 2球が互いに及ぼしあう力の大きさは何Nか、またそれは引力か斥力か. 次に2球をいったん接触させた後,再び 0.30m離した. (2) 各球のもつ電荷はそれぞれ何Cか. (3)このとき、2球が互いに及ぼしあう力の大きさは何Nか.またそれは引力か斥力か. 202. (静電誘導と誘電分極) 材質と大きさが同じで、電荷をもっていない2つの金属球A,Bに 帯電体Cを近づけて, 図のように次の順に操作をするとき, 金属球の表面に現れる電荷の分布を 図に示せ. C A B (1) 接触しているA,BのAに負の帯電体Cを近づける. (2) Cを近づけたまま, AとBを少し離す. (3)(2)の状態から Cを十分遠くに離す. B (2) (4)(3)の状態から, A, B を十分遠くに離す. A B A,Bを不導体(誘電体)でできた球D,Eにかえて, (3) 上の(1)~(3)と同じ操作を行う. B (5) (3)のとき,D,Eの表面に現れる電荷はどうなるか. (4) 文章で答えよ.

回答募集中 回答数: 0
物理 高校生

高校物理の万有引力の問題です。 (6)と(7)が分からないので教えてください

問2 万有引力の典型問題 頻出かつ大事な考え方が詰まっているのでしっかりとできるようにしよう。 地上の1点から鉛直上方へ質量mの小物体を打ち上げる。 地球は半径R、 質量Mの一様な球で、物体は地球 から万有引力の法則にしたがう力を受けるものとする。 図を参照して、以下の問いに答えよ。 ただし、 地 上での重力加速度の大きさを」とする。 また、 地球の自転および、 公転は無視するものとする。 (1)地上での重力加速度の大きさ」を万有引力定数G、および、R、Mを用いて表せ。 以下の問いでは、Gを用いずに答えよ。 (2) 物体の速度が地球の中心から2Rの距離にある点Aで0になるためには、初速度の大きさ”をどれだけに すればよいか。 物体の速度が点Aで0になった瞬間、 物体に大きさがでOAに垂直に方向の速度を与える。 (3) 物体が地球の中心を中心とする等速円運動をするためにはひをいくらにすればよいか。 実際には、点Aで物体に与える速さが (3) で求めた値からずれてしまい、 物体の軌道は、 地球を1つの焦点 とし、 ABを長軸とする楕円となった。 (4)点Bにおける物体の速さをを用いて表せ。 ただし、点Bでの地球の中心からの距離は6Rである。 (5) 物体がABを長軸とする楕円軌道を描くためには、 をどれだけにすればよいか。 (6)(3)の結果を用いて、 ケプラーの第3法則の比例定数kを求めよ。 (7)ABを長軸とする楕円運動の周期を求めよ。 m M A 2R 6R B

回答募集中 回答数: 0
物理 高校生

名問の森の質問です。 (2)の解説部分の赤線がなぜなのかいまいちよく分かりません。教えてください🙇‍♀️

BxX 31 直流回路 電圧 100Vで使用すると, 80 W を消費する電球 L と, 40W を消費 する電球 M がある。 L, Mにかかる電圧 V〔V〕 と,電球を流れる電流 I〔A〕との関係を示す特性曲線は図1のようである。有効数字2桁で 答えよ。 19/9 名 00(1) Lに電圧 80Vをかけて使用するとき,Lの抵抗値はいくらか。ま た,消費電力はいくらか。 × (2) Lを電圧 100Vで使用しているとき,Lのフィラメントの温度は いくらか。ただし,抵抗の温度係数を2.5×10-3/℃ 室温を0℃と する。また,図1の点線はLの特性曲線の原点における接線を示す ものとする。 だから (3)図2において,Eは内部抵抗の無視できる起電力 120V の電池 Rは100Ωの抵抗である。 L を端子 XY間に連結して使用すると きLの電圧と消費電力はいくらか。ば (4)Lと100[Ω] の抵抗3本を並列にして(図3), 図2のXY間に連 結して使用するとき,Lにかかる電圧はいくらか。 × (5) LとMを並列にして、 図2のXY間に連結して使用するとき, L の消費電力はいくらか。 また, 回路全体での消費電力はいくらか。 Level (1) ★ (2) (3) (4) (5) Point & Hint Poji[C]での抵抗値は0袋)の (2)(4は抵抗の温度係数)が漁費電力 31 105 民として、R=R(1+al)と表され が大きいほど高温になる。つまり、グラ フの右上に向かって温度が高くなっている。 すると室温はどのあたりか。 706 図1を生かしたいのでにかかる圧を流れる電流を」として、キル ヒホッフの法則で関係式をつくる。一種の連立方程式の問題だが, グラフ上で解 くことになる。 (5)LとMを1つの電球とみて特性曲線をつくってみる。 LECTURE (1) 図1より V = 80[V] のとき I=0.7 〔A〕 の電流が流れるから, オーム の法則 V=RI より抵抗値 Rは R= == 80 0.7 ≒1.1×102 [Ω] 消費電力は VI = 80×0.7=56 〔W〕 RI2を用いてもよいが, VI ならダイレクトに計算できる。 10 M+J (2)V=100 〔V〕 のとき, I = 0.8 〔A〕 だから VOST V 100 R= == =125 [Ω] I 0.8 室温0℃はジュール熱の発生が無視できる原点近くの (VIが0に近い) 状態である。 [℃] での抵抗値 R のまま一定を保てば, 特性曲線は点線の 20 0.4 0.2 I[A] 1.2 225 1.0 0.8 0.6 Y 120V 100Ω RATE 図2 L IM 091 0 0 20 40 60 80 100 120 100Ω V(V) 図1 図3 ような直線となるはずだから Ro=1.0=20[Ω] よって, 求める温度を t [℃] とすると 点線のどこを 3. |使ってもよい 125 = 20 × ( 1 + 2.5 × 10-3t) .. t = 2.1×103 [℃] (3)Lの電圧、電流をV, I とすると, キルヒホッフの法則より 120 100I+V ・・・・・・ ① この関係を満たす V. Iは次図の直線(実線) で表される。 Lの特性曲線との交点が求める答 えだから V = 60[V] I = 0.6 (A) 消費電力はVI=60×0.6=36〔W〕 式①をグラフ化するとき 1次式だから直線 100Ω 120V 図 a

解決済み 回答数: 1
物理 高校生

なぜ右向きを正に運動方程式を立てるのかがわかりません 左に動くのになぜ左向きが正ではないのでしょうか?

(1) 図1のように質量の無視できるばねを鉛直につり下げる. 鉛直下向きを正としてy軸をと りばねが自然長であるときのばねの先端を原点とする. 大きさの無視できる質量mの物 体をばねの先端にとりつけると、位置y=I1-a で物体に働く重力とばねの復元方がつ り合い,物体は静止した.ただし,ばね定数を重力加速度の大きさを9とする。物体を下 方に引いて静かに手を離すと, 物体はy軸方向に y を中心とする単振動をはじめた.物体の 座標をy, 加速度をαy とすると, 運動方程式は I1-b と書ける. (2)次に図2のように、摩擦のある水平面上でばね定数kのばねの一端を固定し、他端に質量 mの物体をとりつける.物体の運動方向にx軸をとり ばねが自然長であるときの物体の位 置を原点Oにとる. 物体と水平面との間の静止摩擦係数!!.動摩擦係数は定数とする. こ こでは、物体の速さが0となるときは、物体に働く摩擦力として、最大で静止摩擦係数を用い た摩擦力が働くものとする. 位置x (0) まで物体を引いて静かに手を放すと, 物体はxがあ る値d以下のときには動かず,dより大きいときには滑り出した. dは I 2 と表される. 物体を位置xo(>d)まで引いて, 時刻 t = 0に静かに手を放すと物体は動き出し,位置 (0)ではじめて速さが0となった. この間の物体の運動方程式は、 物体の座標をx, 加速 度をα とすると. I3-a と書ける.この方程式を(1)の場合と比較すると, この運動は, I3-b を中心とする単振動である. x1 は x を用いて14-a と表される.x で物 体が静止し続けるためのxの最大値 Xは 14-b である. xc= 以下では,x > Xとする. 物体はx から再び動き出し, x2 ( d) で再び速さが0となっ また、この間の物体の運動方程式は I5-a と書け, x2 は x を用いて I5-b と表され る.その後,物体は再度 x2 から動き出したが, x(<0) で速さが0となり再び動き出すこと はなかった. 力学的エネルギーの変化が動摩擦力の行った仕事に等しいことを利用すると,x3 に達するまでに物体が運動した全行程の長さは, x0 と x3 を用いて 16-a と表すことがで きる。 物体の位置と時刻との関係をグラフで表すと図3の 16-b のようになる.

解決済み 回答数: 1