学年

教科

質問の種類

物理 高校生

オレンジ並み線の部分です 10t=2分の1×0.50t2乗ではダメですか?

知識 16 応用例題1等加速度直線運動と相対速度 止まっていた自動車Aが一定の加速度で走り始めた。Aが走り始めた瞬間に,Aの 横を10m/sの一定の速さでAが動く向きに走ってきた自動車Bが追い越していった。 Aは走り始めてから 100m 走ったところでBと同じ速度になった。 Aの加速度の大きさはいくらか。 (2)AがBに追いつくまでの走行距離を求めよ。 (3)AがBに追いついたとき,Aから見たBの相対速度を求めよ。 ! センサーフ 時刻 t = 0 に位置x=0を 同時に通過 (出発) したもの として考える。 解説 自動車 A が走る向きをx軸の正の向きとする。 v=0 加速度 α a →10m/s -100 m- 10m/s を であ (1) 23 (3) 知識 17 上泉 上昇1234 →UA グラフ (1) (2) (3) →10m/s グラフ (4) v[m/s] 自動車A- 自動車B 10 DOD B -x (m]- 知識 (1)Aの加速度をα[m/s] とすると,ぴ-v=2axより, 10°-02=2a×100 ゆえに,a= 0.50m/s2 (2)A が発進してから自動車Bに追いつくまでの距離を x[m], かかった時間を [[s] とすると, 1 2 A について, x=vot+=aťより,x=0+≒×0.50t…① Bについて, x=vtより, x=10t 0+1/2×0.50 [発展] 18 船 (1) (2) …② t[s] 式 ①,②よりを消去すると, x= 速度が同じ ると、よ=1/2x0.50×(赤)~ IC 知 グラフ 1 になる時刻 AがBに追い つく時刻 x(x-400)=0 ゆえに、x=400m (x=0は不適) 物 三角形と長方形の面積が等しく なる時刻にAがBに追いつく (3)追いついたときのAの速度をva [m/s] とすると, v=2ax より vA-02=2×0.50×400 ゆえに,ひA=√2×0.50×400=20m/s Aから見たBの相対速度を v^B [m/s] とすると, VAB=UB-VAより, VAB=10-20=-10m/s よって,進む向きと逆向きに10m/s (1 (2

解決済み 回答数: 1
物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

(2)で9.8t=20を計算してt=2.04816...で有効数字から2.0sになることはいいんですが、(3)で2.04を使って計算していて今回みたいに割り切れなくて次の問題で使うって時どこまで値をとるんですか? 教えてください わかりにくかったら申し訳ないです

① 基本例題7 斜方投射 物理 高 基本問題 41,42 水平な地面から, 水平とのなす角が30° の向きに 速さ 40m/sで小球を打ち上げた。 図のようにx軸, 軸をとり、重力加速度の大きさを 9.8m/s2 として 次の各問に答えよ。を求め、 y 40m/s 30° 地面 x (1) 打ち上げてから0.20s 後の速度の成分 成分と, 位置のx座標, y 座標を求めよ。 (2) 打ち上げてから最高点に達するまでの時間を求めよ。 (3) 地面に達したときの水平到達距離を求めよ。 指針 小球は, x方向には速さ 40cos 30% m/sの等速直線運動をし, 夕方向には初速度 40sin 30°m/s の鉛直投げ上げと同じ運動をする。 最高点に達したとき, 小球の速度の鉛直成分は であり, 打ち上げてから地面に達するまでの時間 は、最高点に達するまでの時間の2倍となる。 「解説」 (1) 速度のx成分,成分は, √3 ひx=40cos30°=40x =20√3 2 =20×1.73=34.6m/s 35m/s Min v=vosino-gt=40sin30°-9.8×0.20 =40x- 12-1.96=18.0m/s 18m/s 位置のx座標, y 座標は, d x=vxt=34.6×0.20=6.92m 6.9m y=vesindt- 2 912 ×9.8×0.202 =40sin30°×0.20-12× =3.80m 3.8m (2) 求める時間は,v=0 となるときであり, v=vosine-gt」から, 0=40sin30°-9.8xt t=2.04s 2.0s (3) 水平方向には等速直線運動をし、地面に達 するまでに (2) で求めた時間の2倍かかるので、 x=vxt=34.6×(2.04×2)=141m 1.4×10m

解決済み 回答数: 1