学年

教科

質問の種類

物理 高校生

高校物理電流と磁場の質問です 磁場の向きを考える時で右ねじの法則を使う時、HaベクトルとPAがなす角は90°と決まっているのですか?鉛筆で書いたような、HaベクトルとHbベクトルがなす角が60°にはならないのですか?

267 直線電流がつくる磁場の合成 十分に長い2本の導線 A,Bを2d [m] 離して平行に張る。 図のように,Aには紙面の 裏から表の向きにI [A] の電流を,Bには表から裏の向きに I [A] の電流を流した。図中の点Pでの磁場の強さ H [A/m] を 求めよ。 P 60° 例題 55 \60 60° 2d 267 B8 十分長い直線電流I〔A〕 が距離[m] の点につくる磁場は、 電流の向きに右ねじが進むようにねじ を回す向きで,その強さは H= [Am] となる。 磁場はベクトルであるから、点Pでの磁場は各 ここがポイント 2πr [VIT 直線電流がつくる磁場を合成して求める。 導線Aと導線Bが点Pにつくる磁場とは 右図のようになる。 導線Aと導線Bに流れる電流 はどちらも「[A] で, AP-BP=2d[m] である から、点Pにつくる磁場の強さは直線電流がつく る磁場の式 「H=- H HA HB 30° 30° より 2πr 60 I I HA=Hn= = [A/m] 2×2d And 点での磁場は,Hと77日を合成した磁場で -2d- B に平行な方向の成分は同じ大きさで逆向きなので打ち消しあい, 合成磁場 の向きは線分ABに垂直上向きになる。 H』とπの線分AB に垂直な 方向の成分は Dを Hasin30°=Hasin30°=ax/[A/m]5 であるから, 点Pでの磁場の強さは 1 別解 下図のように、 磁場 と君がな す角は60°である。 Hは豆 とTBを2辺とする平行四辺 形の対角線なので ∠PRQ=60° となり, △PQR は正三角形である。 ゆえに H=H= -[A/m] 4nd R 60H 60° 60° 060° #ダイ I 1 I H=2x = 4rd 2 And [A/m] (1+1)×0.0+0 HA H B P S

未解決 回答数: 0
物理 高校生

なぜ電圧が等しくなるのでしょうか?

電気容量 2.0F, C2=3.0μF の2つのコンデンサー, V=2.0×102V の電池, スイッチ Si, S2 を用いて,図の回 路をつくる。 S, を閉じて Cのコンデンサーを充電したの Sを切り、次に S2 を閉じて十分に時間が経過した。 C. C2のコンデンサーは,はじめ電荷をもっていなかった 200 203, 200 S₁ Sz/ C₁ C2 = とする。 C. C2 のコンデンサーにたくわえられた電荷はそれぞれ何Cか。 S, を切ってからSを閉じる前の Cの電荷をQとし, 求めるC,, C2 の電荷を Q.. Q2 とする。 電池を切りはなして S2 を閉じるので, 電気量保存の法則から、図の破線で囲まれた部分 この電荷は保存される。 すなわち, QQ,+Q2 で ある。 また, C, C の上側、下側の極板は, それ それ導線で接続されており、電荷の移動が完了す S2 C +Q C 5 ると,上側, 下側のそれぞれの極板の電位は等し くなる。 すなわち, 各極板間の電圧は等しい。 ■解説 S を閉じたとき, C1のコンデンサ ーにたくわえられる電荷をQ とすると, Q=CV=(2.0×10-) × (2.0×102) =4.0×10-4C S, を切り, S2 を閉じた後の C, C2 のコンデンサ 一の電荷を, それぞれ Q1 Q2 とする。電気量保 存の法則から, Q1+Qz=4.0×10-4 ... ① また,各コンデンサーの極板間の電圧は等しい。 なんで Q2 Q₁ S2 +Q₁ +Qzl == ..2 2.0×10-6 3.0×10-6 -Q₁ -Q2C 2 理すると, 式 ② から, Q2=3Q1/2となり, 式① に代入して整 Q=1.6×10-C, Q2 = 2.4×10-C 13. コンデンサー 145

回答募集中 回答数: 0